Abstract

To examine the effect of oxide layer thickness on fatigue behavior, rotating bending fatigue tests were performed on the aluminum alloy A2014-T6 with oxide layers of 3 different thicknesses in laboratory air and 3 % sodium chloride (NaCl) solution over a wide cycle-life region (104–109 cycles). Tests were also conducted on untreated specimens for comparison. Based on the results of fatigue tests in laboratory air, deterioration of the fatigue strength was observed for anodized specimens having an oxide layer in comparison with untreated specimens. The fatigue strength of anodized specimens decreased with increasing oxide layer thickness. On the other hand, fatigue test results in 3 % NaCl solution showed that anodizing improved fatigue life, which increased with increasing oxide layer thickness. In addition, the thickness of the oxide layer was found to be important from the viewpoint of fracture mechanics.

References

1.
Kikuchi
S.
,
Nakamura
Y.
,
Nambu
K.
, and
Ando
M.
, “
Effect of Shot Peening Using Ultra-Fine Particles on Fatigue Properties of 5056 Aluminum Alloy under Rotating Bending
,”
Materials Science and Engineering: A
652
(January
2016
):
279
286
, https://doi.org/10.1016/j.msea.2015.11.076
2.
Takahashi
K.
,
Osedo
H.
,
Suzuki
T.
, and
Fukuda
S.
, “
Fatigue Strength Improvement of an Aluminum Alloy with a Crack-Like Surface Defect Using Shot Peening and Cavitation Peening
,”
Engineering Fracture Mechanics
193
(April
2018
):
151
161
, https://doi.org/10.1016/j.engfracmech.2018.02.013
3.
Carvalho
A. L. M.
and
Voorwald
H. J. C.
, “
Influence of Shot Peening and Hard Chromium Electroplating on the Fatigue Strength of 7050-T7451 Aluminum Alloy
,”
International Journal of Fatigue
29
, no. 
7
(July
2007
):
1282
1291
, https://doi.org/10.1016/j.ijfatigue.2006.10.003
4.
Benedetti
M.
,
Fontanari
V.
,
Bandini
M.
, and
Savio
E.
, “
High- and Very High-Cycle Plain Fatigue Resistance of Shot Peened High-Strength Aluminum Alloys: The Role of Surface Morphology
,”
International Journal of Fatigue
70
(January
2015
):
451
462
, https://doi.org/10.1016/j.ijfatigue.2014.07.002
5.
Oguri
K.
, “
Fatigue Life Enhancement of Aluminum Alloy for Aircraft by Fine Particle Shot Peening (FPSP)
,”
Journal of Materials Processing Technology
211
, no. 
8
(August
2011
):
1395
1399
, https://doi.org/10.1016/j.jmatprotec.2011.03.011
6.
Gao
Y. K.
, “
Improvement of Fatigue Property in 7050–T7451 Aluminum Alloy by Laser Peening and Shot Peening
,”
Materials Science and Engineering: A
528
, nos. 
10–11
(April
2011
):
3823
3828
, https://doi.org/10.1016/j.msea.2011.01.077
7.
Luong
H.
and
Hill
M. R.
, “
The Effects of Laser Peening and Shot Peening on High Cycle Fatigue in 7050-T7451 Aluminum Alloy
,”
Materials Science and Engineering: A
527
, no. 
3
(January
2010
):
699
707
, https://doi.org/10.1016/j.msea.2009.08.045
8.
Zhou
J.
,
Li
J.
,
Xu
S.
,
Huang
S.
,
Meng
X.
,
Sheng
J.
,
Zhang
H.
,
Sun
Y.
, and
Feng
A.
, “
Improvement in Fatigue Properties of 2024-T351 Aluminum Alloy Subjected to Cryogenic Treatment and Laser Peening
,”
Surface and Coatings Technology
345
(July
2018
):
31
39
, https://doi.org/10.1016/j.surfcoat.2018.03.088
9.
Masaki
K.
,
Ochi
Y.
,
Matsumura
T.
, and
Sano
Y.
, “
Effects of Laser Peening Treatment on High Cycle Fatigue Properties of Degassing-Processed Cast Aluminum Alloy
,”
Materials Science and Engineering: A
468–470
(November
2007
):
171
175
, https://doi.org/10.1016/j.msea.2006.09.126
10.
Zhang
J.
,
Jin
J.
,
Tao
Y.
,
Cao
R.
,
Kou
X.
, and
Tian
X.
, “
Investigation of Corrosion Properties with Ni–P/TiNO Coating on Aluminum Alloy Bipolar Plates in Proton Exchange Membrane Fuel Cell
,”
International Journal of Hydrogen Energy
47
, no. 
52
(June
2022
):
22165
22179
, https://doi.org/10.1016/j.ijhydene.2022.05.024
11.
Moradi
M.
,
Gerami Shirazi
B.
,
Sadeghi
A.
, and
Seidi
S.
, “
Electroless Plating of Sn/Cu/Zn Triple Layer on AA6082 Aluminum Alloy
,”
International Journal of Lightweight Materials and Manufacture
5
, no. 
1
(March
2022
):
1
10
, https://doi.org/10.1016/j.ijlmm.2021.08.002
12.
Villalobos-Gutiérrez
C. J.
,
Gedler-Chacón
G. E.
,
La Barbera-Sosa
J. G.
,
Piñeiro
A.
,
Staia
M. H.
,
Lesage
J.
,
Chicot
D.
,
Mesmacque
G.
, and
Puchi-Cabrera
E. S.
, “
Fatigue and Corrosion Fatigue Behavior of an AA6063-T6 Aluminum Alloy Coated with a WC–10Co–4Cr Alloy Deposited by HVOF Thermal Spraying
,”
Surface and Coatings Technology
202
, no. 
18
(June
2008
):
4572
4577
, https://doi.org/10.1016/j.surfcoat.2008.04.044
13.
Uozato
S.
,
Nakata
K.
, and
Ushio
M.
, “
Corrosion and Wear Behaviors of Ferrous Powder Thermal Spray Coatings on Aluminum Alloy
,”
Surface and Coatings Technology
169–170
(June
2003
):
691
694
, https://doi.org/10.1016/S0257-8972(03)00141-5
14.
Edrisy
A.
,
Perry
T.
,
Cheng
Y. T.
, and
Alpas
A. T.
, “
Wear of Thermal Spray Deposited Low Carbon Steel Coatings on Aluminum Alloys
,”
Wear
251
, nos. 
1–12
(October
2001
):
1023
1033
, https://doi.org/10.1016/S0043-1648(01)00718-9
15.
Fernandes
G. H. N.
,
Lopes
G. H. F.
,
Barbosa
L. M. Q.
,
Martins
P. S.
, and
Machado
Á. R.
, “
Wear Mechanisms of Diamond-Like Carbon Coated Tools in Tapping of AA6351 T6 Aluminium Alloy
,”
Procedia Manufacturing
53
(
2021
):
293
298
, https://doi.org/10.1016/j.promfg.2021.06.032
16.
Deng
H.
,
Chen
D.
,
Wang
Y.
,
Zhou
Y.
, and
Gao
P.
, “
Effects of Silicon on Microstructure and Corrosion Resistance of Diamond-Like-Carbon Film Prepared on 2024 Aluminum Alloy by Plasma-Enhanced Chemical Vapor Deposition
,”
Diamond and Related Materials
110
(December
2020
): 108144, https://doi.org/10.1016/j.diamond.2020.108144
17.
Witharamage
C. S.
,
Alrizqi
M. A.
,
Chirstudasjustus
J.
,
Darwish
A. A.
,
Ansell
T.
,
Nieto
A.
, and
Gupta
R. K.
, “
Corrosion-Resistant Metallic Coatings for Aluminum Alloys by Cold Spray
,”
Corrosion Science
209
(December
2022
): 110720, https://doi.org/10.1016/j.corsci.2022.110720
18.
Zuo
Y.
,
Zhao
P.-H.
, and
Zhao
J.-M.
, “
The Influences of Sealing Methods on Corrosion Behavior of Anodized Aluminum Alloys in NaCl Solutions
,”
Surface and Coatings Technology
166
, nos. 
2–3
(March
2003
):
237
242
, https://doi.org/10.1016/S0257-8972(02)00779-X
19.
Quebbou
Z.
,
Chafi
M.
, and
Omari
L. E. H.
, “
Corrosion Resistance of 5005 Aluminum Alloy by Anodizing Treatment in a Mixture of Phosphoric and Boric Acids
,”
Materials Today: Proceedings
37
, Part 3 (
2021
):
3854
3859
, https://doi.org/10.1016/j.matpr.2020.08.406
20.
Nakamura
Y.
,
Sakai
T.
,
Hirano
H.
, and
Chandran
K. S. R.
, “
Effect of Alumite Surface Treatments on Long-Life Fatigue Behavior of a Cast Aluminum in Rotating Bending
,”
International Journal of Fatigue
32
, no. 
3
(March
2010
):
621
626
, https://doi.org/10.1016/j.ijfatigue.2009.10.002
21.
de Camargo
J. A. M.
,
Cornelis
H. J.
,
Cioffi
V. M. O. H.
, and
Costa
M. Y. P.
, “
Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy
,”
Surface and Coatings Technology
201
, no. 
24
(October
2007
):
9448
9455
, https://doi.org/10.1016/j.surfcoat.2007.03.032
22.
Shahzad
M.
,
Chaussumier
M.
,
Chieragatti
R.
,
Mabru
C.
, and
Rezai-Aria
F.
, “
Influence of Anodizing Process on Fatigue Life of Machined Aluminium Alloy
,”
Procedia Engineering
2
, no. 
1
(April
2010
):
1015
1024
, https://doi.org/10.1016/j.proeng.2010.03.110
23.
Rajasekaran
B.
,
Raman
S. G. S.
,
Krishna
L. R.
,
Joshi
S. V.
, and
Sundararajan
G.
, “
Influence of Microarc Oxidation and Hard Anodizing on Plain Fatigue and Fretting Fatigue Behavior of Al–Mg–Si Alloy
,”
Surface and Coatings Technology
202
, no. 
8
(January
2008
):
1462
1469
, https://doi.org/10.1016/j.surfcoat.2007.06.058
24.
Priet
B.
,
Odemer
G.
,
Blanc
C.
,
Giffard
K.
, and
Arurault
L.
, “
Effect of New Sealing Treatments on Corrosion Fatigue Lifetime of Anodized 2024 Aluminium Alloy
,”
Surface and Coatings Technology
307
, Part A (December
2016
):
206
219
, https://doi.org/10.1016/j.surfcoat.2016.07.083
25.
Shih
T.-S.
and
Chiu
Y.-W.
, “
Corrosion Resistance and High-Cycle Fatigue Strength of Anodized/Sealed AA7050 and AA7075 Alloys
,”
Applied Surface Science
351
(October
2015
):
997
1003
, https://doi.org/10.1016/j.apsusc.2015.06.030
26.
Peterson
R. E.
,
Stress Concentration Design Factors
(
New York
:
John Wiley & Sons, Inc.
,
1953
).
27.
Yamamoto
T.
,
Kokubu
A.
,
Sakai
T.
, and
Nakamura
Y.
, “
Development and Several Additional Performances of Dual-Spindle Rotating Bending Fatigue Testing Machine GIGA QUAD
,” in
Sixth International Conference on Very High Cycle Fatigue
(
Chengdu, China
:
Japan Science and Technology Agency
,
2014
).
28.
Sakai
T.
and
Sugeta
A.
, “
Publication of the Second Edition of ‘Standard Evaluation Method of Fatigue Reliability for Metallic Materials’ [Standard Regression Method of S-N Curves]
,”
Journal of the Society of Materials Science, Japan
54
, no. 
1
(
2005
):
37
43
.
29.
Murakami
Y.
,
Metal Fatigue: Effect of Small Defects and Nonmetallic Inclusions
(
Tokyo
:
Yokendo Ltd.
,
2002
).
30.
McDowell
D. L.
,
Gall
K.
,
Horstemeyer
M. F.
, and
Fan
J.
, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Engineering Fracture Mechanics
70
, no. 
1
(January
2003
):
49
80
, https://doi.org/10.1016/S0013-7944(02)00021-8
This content is only available via PDF.
You do not currently have access to this content.