Abstract

In the very high cycle fatigue regime, fatigue crack initiation in high-strength steels is usually correlated to a subsurface inclusion with a fine granular area (FGA). Localized stress–strain concentration at the subsurface inclusion is a critical factor. Fatigue crack initiation with an FGA in the bulk matrix without any defect has rarely been reported. In this paper, a fundamental study on the formation of FGAs in the bulk matrix of an austenitic stainless steel has been carried out using a progressive stepwise load-increasing test with a cycle step of about 108 cycles. FGA formation in the subsurface bulk matrix has been observed. The microstructural damage in the fatigue-tested specimens has been studied using the electron channeling contrast imaging electron microscopy technique. Strain localization and grain fragmentation are the main processes for the formation of FGAs. Local plasticity exhaustion leads to crack initiation due to local stress concentrations. This method can also be used to predict the fatigue damage process, especially the damage rate in individual specimens.

References

1.
Mughrabi
H.
and
Höppel
H. W.
, “
Cyclic Deformation and Fatigue Properties of Very Fine Grained Metals and Alloys
,”
International Journal of Fatigue
32
, no. 
9
(September
2010
):
1413
1427
, https://doi.org/10.1016/j.ijfatigue.2009.10.007
2.
Lukáš
P.
and
Kunz
L.
, “
Specific Features of High-Cycle and Ultra-High-Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, nos. 
8–9
(September
2002
):
747
753
, https://doi.org/10.1046/j.1460-2695.2002.00562.x
3.
Wood
W. A.
,
Cousland
S. McK.
, and
Sargant
K. R.
, “
Systematic Microstructural Changes Peculiar to Fatigue Deformation
,”
Acta Metallurgica
11
, no. 
7
(July
1963
):
643
652
, https://doi.org/10.1016/0001-6160(63)90002-6
4.
Forsyth
P. J. E.
, “
Fatigue Damage and Crack Growth in Aluminium Alloys
,”
Acta Metallurgica
11
, no. 
7
(July
1963
):
703
715
, https://doi.org/10.1016/0001-6160(63)90008-7
5.
Stanzl
S. E.
,
Tschegg
E. K.
, and
Mayer
H.
, “
Lifetime Measurements for Random Loading in the Very High Cycle Fatigue Range
,”
International Journal of Fatigue
8
, no. 
4
(October
1986
):
195
200
, https://doi.org/10.1016/0142-1123(86)90021-6
6.
Murakami
Y.
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusion
(
Oxford
:
Elesvier Science
,
2002
).
7.
Bathias
C.
and
Paris
P. C.
,
Gigacycle Fatigue in Mechanical Practice
, 1st ed. (
New York
:
Marcel Dekker
,
2005
).
8.
Chai
G.
,
Forsman
T.
,
Gustavsson
E.
, and
Wang
C.
, “
Formation of Fine Grained Area in Martensitic Steel during Very High Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
38
, no. 
11
(November
2015
):
1315
1323
, https://doi.org/10.1111/ffe.12345
9.
Chai
G.
,
Zhou
N.
,
Ciurea
S.
,
Andersson
M.
, and
Peng
R. L.
, “
Local Plasticity Exhaustion in a Very High Cycle Fatigue Regime
,”
Scripta Materialia
66
, no. 
10
(May
2012
):
769
772
, https://doi.org/10.1016/j.scriptamat.2012.02.003
10.
Sakai
T.
,
Harada
H.
, and
Oguma
N.
, “
Crack Initiation Mechanism of Bearing Steel in High Cycle Fatigue
,” in
Fracture of Nano and Engineering Materials and Structures
, ed.
Gdoutos
E. E.
(
Berlin
:
Springer
,
2006
),
1129
1130
, https://doi.org/10.1007/1-4020-4972-2_560
11.
Hong
Y.
and
Sun
C.
, “
The Nature and the Mechanism of Crack Initiation and Early Growth for Very-High-Cycle Fatigue of Metallic Materials – An Overview
,”
Theoretical and Applied Fracture Mechanics
92
(December
2017
):
331
350
, https://doi.org/10.1016/j.tafmec.2017.05.002
12.
Sharma
A.
,
Oh
M. C.
, and
Ahn
B.
, “
Recent Advances in Very High Cycle Fatigue Behavior of Metals and Alloys—A Review
,”
Metals
10
, no. 
9
(September
2020
): 1200, https://doi.org/10.3390/met10091200
13.
Sippel
J. P.
and
Kerscher
E.
, “
Properties of the Fine Granular Area and Postulated Models for Its Formation during Very High Cycle Fatigue—A Review
,”
Applied Sciences
10
, no. 
23
(December
2020
): 8475, https://doi.org/10.3390/app10238475
14.
Avateffazeli
M.
and
Haghshenas
M.
, “
Ultrasonic Fatigue of Laser Beam Powder Bed Fused Metals: A State-of-the-Art Review
,”
Engineering Failure Analysis
134
(April
2022
): 106015, https://doi.org/10.1016/j.engfailanal.2021.106015
15.
Grad
P.
,
Reuscher
B.
,
Brodyanski
A.
,
Kopnarski
M.
, and
Kerscher
E.
, “
Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels
,”
Scripta Materialia
67
, no. 
10
(November
2012
):
838
841
, https://doi.org/10.1016/j.scriptamat.2012.07.049
16.
Spriestersbach
D.
and
Kerscher
E.
, “
The Role of Local Plasticity during Very High Cycle Fatigue Crack Initiation in High-Strength Steels
,”
International Journal of Fatigue
111
(June
2018
):
93
100
, https://doi.org/10.1016/j.ijfatigue.2018.02.008
17.
Giertler
A.
,
Söker
M.
,
Dönges
B.
,
Istomin
K.
,
Ludwig
W.
,
Pietsch
U.
,
Fritzen
C. P.
,
Christ
H.-J.
, and
Krupp
U.
, “
The Significance of Local Plasticity for the Crack Initiation Process during Very High Cycle Fatigue of High Strength Steels
,”
Procedia Materials Science
3
(
2014
):
1353
1358
, https://doi.org/10.1016/j.mspro.2014.06.218
18.
Nakamura
Y.
,
Sakai
T.
,
Hirano
H.
, and
Ravi Chandran
K. S.
, “
Effect of Alumite Surface Treatments on Long-Life Fatigue Behavior of a Cast Aluminum in Rotating Bending
,”
International Journal of Fatigue
32
, no. 
3
(March
2010
):
621
626
, https://doi.org/10.1016/j.ijfatigue.2009.10.002
19.
Li
Y. D.
,
Yang
Z. G.
,
Li
S. X.
,
Liu
Y. B.
, and
Chen
S. M.
, “
Correlations between Very High Cycle Fatigue Properties and Inclusion of GCr15 Bearing Steel
” (in Chinese),
Acta Metallurgica Sinica
44
, no. 
8
(August
2008
):
968
972
.
20.
Sakai
T.
,
Oguma
N.
, and
Morikawa
A.
, “
Microscopic and Nanoscopic Observations of Metallurgical Structures around Inclusions at Interior Crack Initiation Site for a Bearing Steel in Very High-Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
38
, no. 
11
(November
2015
):
1305
1314
, https://doi.org/10.1111/ffe.12344
21.
Zhu
M. L.
,
Zhu
G.
, and
Xuan
F. Z.
, “
On Micro-Defect Induced Cracking in Very High Cycle Fatigue Regime
,”
Fatigue & Fracture of Engineering Materials & Structures
45
, no. 
11
(November
2022
):
3393
3402
, https://doi.org/10.1111/ffe.13793
22.
Chai
G.
, “
The Formation of Subsurface Non-defect Fatigue Crack Origins
,”
International Journal of Fatigue
28
, no. 
11
(November
2006
):
1533
1539
, https://doi.org/10.1016/j.ijfatigue.2005.06.060
23.
Wang
Q. Y.
,
Berard
J. Y.
,
Rathery
S.
, and
Bathias
C.
, “
Technical Note High-Cycle Fatigue Crack Initiation and Propagation Behaviour of High-Strength Spring Steel Wires
,”
Fatigue & Fracture of Engineering Materials & Structures
22
, no. 
8
(August
1999
):
673
677
, https://doi.org/10.1046/j.1460-2695.1999.t01-1-00184.x
24.
Marcel Prot
E.-
, “
L’essai de fatigue sous charge progressive. Une nouvelle technique d’essai des matériaux
” (in French),
La Revue de Médecine
45
, no. 
12
(December
1948
):
481
489
, https://doi.org/10.1051/metal/194845120481
25.
Thomas
C.
,
Sosa
I.
,
Setién
J.
,
Polanco
J. C.
, and
Cimentada
A. I.
, “
Evaluation of the Fatigue Behaviour of Recycled Aggregate Concrete
,”
Journal of Cleaner Production
65
(February
2014
):
397
405
, https://doi.org/10.1016/j.jclepro.2013.09.036
26.
Starke
P.
,
Walther
F.
, and
Eifler
D.
, “
‘PHYBAL’ A Short-Time Procedure for a Reliable Fatigue Life Calculation
,”
Advanced Engineering Materials
12
, no. 
4
(April
2010
):
276
282
, https://doi.org/10.1002/adem.200900344
27.
Kucharczyk
P.
,
Rizos
A.
,
Münstermann
S.
, and
Bleck
W.
, “
Estimation of the Endurance Fatigue Limit for Structural Steel in Load Increasing Tests at Low Temperature
,”
Fatigue & Fracture of Engineering Materials & Structures
35
, no. 
7
(July
2012
):
628
637
, https://doi.org/10.1111/j.1460-2695.2011.01656.x
28.
Walther
F.
and
Eifler
D.
, “
Cyclic Deformation Behaviour of Steels and Light-Metal Alloys
,”
Materials Science and Engineering: A
468–470
(November
2007
):
259
266
, https://doi.org/10.1016/j.msea.2006.06.146
29.
Chai
G.
,
Ewenz
L.
,
Persson
K.
,
Bergström
J.
,
Burman
C.
, and
Zimmermann
M.
, “
Fatigue Behavior in Metastable Stainless Steel during Very High Cycle Fatigue Using Stepwise Loading Method
,” in
VHCF7: Seventh International Conference on Very High Cycle Fatigue
, eds.
Zimmermann
M.
and
Christ
H.-J.
(
Berlin
:
German Association for Materials Research and Testing
,
2017
),
174
179
.
30.
Chung
Y.-H.
,
Chen
T.-C.
,
Lee
H.-B.
, and
Tsay
L.-W.
, “
Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel
,”
Metals
11
, no. 
9
(September
2021
): 1408, https://doi.org/10.3390/met11091408
31.
Zhang
K. Y.
,
Pyoun
Y. S.
,
Cao
X. J.
,
Wu
B.
, and
Murakami
R.
, “
Fatigue Properties of SUS304 Stainless Steel after Ultrasonic Nanocrystal Surface Modification (UNSM)
,” in
International Journal of Modern Physics: Conference Series
, vol. 6 (Singapore:
World Scientific
,
2012
),
330
335
, https://doi.org/10.1142/S201019451200339X
32.
Fredj
N. B.
,
Nasr
M. B.
,
Rhouma
A. B.
,
Sidhom
H.
, and
Braham
C.
, “
Fatigue Life Improvements of the AISI 304 Stainless Steel Ground Surfaces by Wire Brushing
,”
Journal of Materials Engineering and Performance
13
, no. 
5
(October
2004
):
564
574
, https://doi.org/10.1361/15477020420819
33.
Birosca
S.
, “
The Deformation Behaviour of Hard and Soft Grains in RR1000 Nickel-Based Superalloy
,”
IOP Conference Series: Materials Science and Engineering
82
(
2015
): 012033, https://doi.org/10.1088/1757-899X/82/1/012033
34.
Tofique
M. W.
, “
Initiation and Early Crack Growth in VHCF of Stainless Steels: Experimental and Theoretical Analysis
” (PhD diss,
Karlstad University
,
2016
).
35.
Padilla
H. A.
 II
and
Boyce
B. L.
, “
A Review of Fatigue Behavior in Nanocrystalline Metals
,”
Experimental Mechanics
50
, no. 
1
(January
2010
):
5
23
, https://doi.org/10.1007/s11340-009-9301-2
36.
Miner
M. A.
, “
Cumulative Damage in Fatigue
,”
Journal of Applied Mechanics
12
, no. 
3
(September
1945
):
A159
A164
, https://doi.org/10.1115/1.4009458
37.
Hearn
E. J.
,
Mechanics of Materials
, 3rd ed. (
Oxford
:
Butterworth-Heinemann
,
1997
).
38.
Mughrabi
H.
, “
Microstructural Mechanisms of Cyclic Deformation, Fatigue Crack Initiation and Early Crack Growth
,”
Philosophical Transactions of the Royal Society A, Mathematical, Physical, and Engineering Sciences
373
, no. 
2038
(March
2015
): 20140132, https://doi.org/10.1098/rsta.2014.0132
39.
Sakai
T.
, “
Historical Review and Future Prospects for Researches on Very High Cycle Fatigue of Metallic Material
,”
Fatigue & Fracture of Engineering Materials & Structures
46
, no. 
4
(April
2023
):
1217
1255
, https://doi.org/10.1111/ffe.13885
40.
Chai
G.
, “
Fatigue Behaviour of Duplex Stainless Steels in the Very High Cycle Regime
,”
International Journal of Fatigue
28
, no. 
11
(November
2006
):
1611
1617
, https://doi.org/10.1016/j.ijfatigue.2005.06.054
41.
Chai
G.
, “
Analysis of Microdamage in a Nickel-Base Alloy during Very High Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
6
(June
2016
):
712
721
, https://doi.org/10.1111/ffe.12412
42.
Wang
C.
, “
Microplasticité et dissipation en fatigue à très grand nombre de cycles du fer et de l’acier
” (PhD diss.,
Université Paris Ouest Nanterre La Defense
,
2013
).
43.
Mughrabi
H.
, “
Cyclic Slip Irreversibility and Fatigue Life: A Microstructure-Based Analysis
,”
Acta Materialia
61
, no. 
4
(February
2013
):
1197
1203
, https://doi.org/10.1016/j.actamat.2012.10.029
44.
Sadek
M.
,
Bergström
J.
,
Hallbäck
N.
,
Burman
C.
,
Elvira
R.
, and
Escauriaza
B.
, “
Fatigue Strength and Fracture Mechanisms in the Very-High-Cycle-Fatigue Regime of Automotive Steels
,”
Steel Research International
91
, no. 
8
(August
2020
): 2000060, https://doi.org/10.1002/srin.202000060
45.
Swenson
D. O.
, “
Transition between Stage I and Stage II Modes of Fatigue Crack Growth
,”
Journal of Applied Physics
40
, no. 
9
(August
1969
):
3467
3475
, https://doi.org/10.1063/1.1658221
46.
Murakami
Y.
, “
Analysis of Stress Intensity Factors of Modes I, II and III for Inclined Surface Cracks of Arbitrary Shape
,”
Engineering Fracture Mechanics
22
, no. 
1
(
1985
):
101
114
, https://doi.org/10.1016/0013-7944(85)90163-8
This content is only available via PDF.
You do not currently have access to this content.