Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Wire-arc directed energy deposition (DED) offers promise for large-scale metal component production, yet challenges persist in achieving consistent microstructure and mechanical properties. This paper investigates the effect of machining-induced deformation and grain refinement on microstructure evolution in mild steel structures printed using hybrid wire-arc DED, which integrates interlayer machining steps into the wire-arc DED process. The study demonstrates that machining with radiused-edge cutting tools induces fragmentation of ferritic/bainitic grains, leading to dispersed and refined grain colonies, that, when subjected to reheating and remelting cycles during subsequent layer depositions, lead to a more refined overall microstructure compared to the wire-arc DED process. Comparative analyses revealed a statistically significant 19.5% mean reduction in grain size and 8.5% increment in microhardness of the resulting hybrid wire-arc DED structure. The work points to interlayer machining as a promising strategy for in situ enhancement of the microstructure and mechanical properties in DED processes.

References

1.
Zhang
,
S.
,
Zhang
,
Y.
,
Gao
,
M.
,
Wang
,
F.
,
Li
,
Q.
, and
Zeng
,
X.
,
2019
, “
Effects of Milling Thickness on Wire Deposition Accuracy of Hybrid Additive/Subtractive Manufacturing
,”
Sci. Technol. Weld. Join.
,
24
(
5
), pp.
375
381
.
2.
Hönnige
,
J.
,
Seow
,
C. E.
,
Ganguly
,
S.
,
Xu
,
X.
,
Cabeza
,
S.
,
Coules
,
H.
, and
Williams
,
S.
,
2021
, “
Study of Residual Stress and Microstructural Evolution in As-Deposited and Inter-Pass Rolled Wire Plus Arc Additively Manufactured Inconel 718 Alloy After Ageing Treatment
,”
Mater. Sci. Eng.: A
,
801
, p.
140368
.
3.
Zhang
,
T.
,
Li
,
H.
,
Gong
,
H.
,
Ding
,
J.
,
Wu
,
Y.
,
Diao
,
C.
,
Zhang
,
X.
, and
Williams
,
S.
,
2022
, “
Hybrid Wire – Arc Additive Manufacture and Effect of Rolling Process on Microstructure and Tensile Properties of Inconel 718
,”
J. Mater. Process. Technol.
,
299
, p.
117361
.
4.
Chen
,
C.
,
Feng
,
T.
,
Sun
,
G.
, and
Zhang
,
H.
,
2022
, “
Microstructure and Mechanical Characteristics of 307Si Stainless Steel Thin-Wall Parts in Wire Arc Additive Manufacturing Hybrid Interlayer High-Speed Friction
,”
Manuf. Lett.
,
33
, pp.
42
45
.
5.
Zhou
,
S.
,
Wang
,
J.
,
Yang
,
G.
,
Wu
,
B.
,
Xie
,
H.
,
Wu
,
K.
, and
An
,
D.
,
2022
, “
Periodic Microstructure of Al–Mg Alloy Fabricated by Inter-Layer Hammering Hybrid Wire Arc Additive Manufacturing: Formation Mechanism, Microstructural and Mechanical Characterization
,”
Mater. Sci. Eng.: A
,
860
, p.
144314
.
6.
Xiong
,
X.
,
Qin
,
X.
,
Hua
,
L.
,
Wan
,
G.
,
Hu
,
Z.
, and
Ni
,
M.
,
2022
, “
Microstructure Evolution and Parameters Optimization of Follow-Up Hammering-Assisted Hybrid Wire Arc Additive Manufacturing
,”
J. Manuf. Process.
,
84
, pp.
681
696
.
7.
Zhang
,
X.
,
Huang
,
S.
,
Li
,
D.
,
Geng
,
J.
,
Yang
,
F.
, and
Li
,
Q.
,
2022
, “
An Approach to Improve the Microstructure and Mechanical Properties: A Hybrid Manufacturing of Laser Directed Energy Deposition and Shot Peening
,”
Addit. Manuf.
,
55
, p.
102686
.
8.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
9.
Gu
,
J.
,
Ding
,
J.
,
Williams
,
S. W.
,
Gu
,
H.
,
Ma
,
P.
, and
Zhai
,
Y.
,
2016
, “
The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys
,”
J. Mater. Process. Technol.
,
230
, pp.
26
34
.
10.
Bai
,
Y.
,
Lee
,
Y. J.
,
Zhao
,
C.
,
Yan
,
Q.
,
Guo
,
Y.
,
Shang
,
Y.
, and
Wang
,
H.
,
2023
, “
Unique Cellular Microstructure-Enabled Hybrid Additive and Subtractive Manufacturing of Aluminium Alloy Mirror With High Strength
,”
J. Mater. Process. Technol.
,
320
, p.
118095
.
11.
Bai
,
Y.
,
Lee
,
Y. J.
,
Guo
,
Y.
,
Yan
,
Q.
,
Zhao
,
C.
,
Kumar
,
A. S.
,
Xue
,
J. M.
, and
Wang
,
H.
,
2023
, “
Efficient Post-Processing of Additive Manufactured Maraging Steel Enhanced by the Mechanochemical Effect
,”
Int. J. Mach. Tools Manuf.
,
193
, p.
104086
.
12.
Li
,
L.
,
Chen
,
H.
,
Liao
,
Z.
,
Yang
,
Y.
, and
Axinte
,
D.
,
2023
, “
Investigation of the Grain Deformation to Orthogonal Cutting Process of the Textured Alloy 718 Fabricated by Laser Powder Bed Fusion
,”
Int. J. Mach. Tools Manuf.
,
190
, p.
104050
.
13.
Kaynak
,
Y.
, and
Kitay
,
O.
,
2018
, “
Porosity, Surface Quality, Microhardness and Microstructure of Selective Laser Melted 316L Stainless Steel Resulting From Finish Machining
,”
J. Manuf. Mater. Process.
,
2
(
2
), p.
36
.
14.
Park
,
S.-H.
,
Son
,
S.-J.
,
Lee
,
S.-B.
,
Yu
,
J.-H.
,
Ahn
,
S.-J.
, and
Choi
,
Y.-S.
,
2021
, “
Surface Machining Effect on Material Behavior of Additive Manufactured SUS 316L
,”
J. Mater. Res. Technol.
,
13
, pp.
38
47
.
15.
Feldhausen
,
T.
,
Raghavan
,
N.
,
Saleeby
,
K.
,
Love
,
L.
, and
Kurfess
,
T.
,
2021
, “
Mechanical Properties and Microstructure of 316L Stainless Steel Produced by Hybrid Manufacturing
,”
J. Mater. Process. Technol.
,
290
, p.
116970
.
16.
Sadeh
,
S.
,
Mathews
,
R.
,
Zhang
,
R.
,
Sunny
,
S.
,
Marais
,
D.
,
Venter
,
A. M.
,
Li
,
W.
, and
Malik
,
A.
,
2023
, “
Interlayer Machining Effects on Microstructure and Residual Stress in Directed Energy Deposition of Stainless Steel 316L
,”
J. Manuf. Process.
,
94
, pp.
69
78
.
17.
Grong
,
O.
, and
Matlock
,
D. K.
,
1986
, “
Microstructural Development in Mild and Low-Alloy Steel Weld Metals
,”
Int. Met. Rev.
,
31
, pp.
27
48
.
18.
Tweed
,
J. H.
, and
Knott
,
J. F.
,
1983
, “
Effect of Reheating on Microstructure and Toughness of C–Mn Weld Metal
,”
Met. Sci.
,
17
(
2
), pp.
45
54
.
19.
Jeelani
,
S.
, and
Ramakrishnan
,
K.
,
1983
, “
Subsurface Plastic Deformation in Machining 6Al-2Sn-4Zr-2Mo Titanium Alloy
,”
Wear
,
85
, pp.
121
130
.
20.
Guo
,
Y.
,
Saldana
,
C.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2011
, “
Controlling Deformation and Microstructure on Machined Surfaces
,”
Acta Mater.
,
59
(
11
), pp.
4538
4547
.
21.
Guo
,
Y.
,
M’Saoubi
,
R.
, and
Chandrasekar
,
S.
,
2011
, “
Control of Deformation Levels on Machined Surfaces
,”
CIRP Ann.
,
60
(
1
), pp.
137
140
.
22.
Ghosh
,
S.
, and
Kain
,
V.
,
2010
, “
Microstructural Changes in AISI 304L Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking
,”
J. Nucl. Mater.
,
403
(
1–3
), pp.
62
67
.
23.
Liao
,
Z.
,
Polyakov
,
M.
,
Diaz
,
O. G.
,
Axinte
,
D.
,
Mohanty
,
G.
,
Maeder
,
X.
,
Michler
,
J.
, and
Hardy
,
M.
,
2019
, “
Grain Refinement Mechanism of Nickel-Based Superalloy by Severe Plastic Deformation – Mechanical Machining Case
,”
Acta Mater.
,
180
, pp.
2
14
.
24.
Thiele
,
J. D.
, and
Melkote
,
S. N.
,
2000
, “
Effect of Tool Edge Geometry on Workpiece Subsurface Deformation and Through-Thickness Residual Stresses for Hard Turning of AISI 52100 Steel
,”
J. Manuf. Process.
,
2
(
4
), pp.
270
276
.
25.
Wu
,
C. L.
,
Ye
,
B. Y.
, and
Deng
,
W. J.
,
2009
, “
Effect of Machining Parameters on Microstructure and Hardness of Ultra-Fine Grained Material Created by Large Strain Machining
,”
Mater. Sci. Forum
,
628–629
, pp.
387
392
.
26.
“Standard Test Methods for Determining Average Grain Size.” Available: https://www.astm.org/e0112-13r21.html. Accessed June 2, 2023.
27.
“Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials.” Available: https://www.astm.org/e0092-17.html. Accessed June 2, 2023.
28.
Choi
,
C. L.
, and
Hill
,
D. C.
,
1978
, “
A Study of Microstructural Progression in As-Deposited Weld Metal
,”
Weld. J.
,
57
(
8
), p.
232
.
29.
Smith
,
G. V.
, and
Mehl
,
R. F.
,
1942
, “
Lattice Relationships in Decomposition of Austenite to Pearlite, Bainite and Martensite
,”
Trans. AIME
,
150
, pp.
211
226
.
30.
Greninger
,
A. B.
, and
Troiano
,
A. R.
,
1940
, “
Crystallography of Austenite Decomposition
,”
Trans. AIME
,
140
, pp.
307
336
.
31.
Bhadeshia
,
H. K. D. H.
,
2001
,
Bainite in Steels: Transformations, Microstructure and Properties
, 2nd ed.,
The Institute of Materials, IOM Communications
,
London
.
32.
Bhadeshia
,
H. K. D. H.
, and
Christian
,
J. W.
,
1990
, “
Bainite in Steels
,”
Metall. Trans. A
,
21
(
3
), pp.
767
797
.
33.
Childs
,
T. H. C.
,
2010
, “
Surface Energy, Cutting Edge Radius and Material Flow Stress Size Effects in Continuous Chip Formation of Metals
,”
CIRP J. Manuf. Sci. Technol.
,
3
(
1
), pp.
27
39
.
34.
Shin
,
D. H.
,
Kim
,
B. C.
,
Kim
,
Y.-S.
, and
Park
,
K.-T.
,
2000
, “
Microstructural Evolution in a Commercial Low Carbon Steel by Equal Channel Angular Pressing
,”
Acta Mater.
,
48
(
9
), pp.
2247
2255
.
35.
Ohmori
,
A.
,
Torizuka
,
S.
,
Nagai
,
K.
,
Koseki
,
N.
, and
Kogo
,
Y.
,
2004
, “
Effect of Deformation Temperature and Strain Rate on Evolution of Ultrafine Grained Structure Through Single-Pass Large-Strain Warm Deformation in a Low Carbon Steel
,”
Mater. Trans.
,
45
(
7
), pp.
2224
2231
.
36.
Campbell
,
J. D.
, and
Ferguson
,
W. G.
,
1970
, “
The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel
,”
Philos. Mag.: J. Theoret. Exp. Appl. Phys.
,
21
(
169
), pp.
63
82
.
37.
Kundu
,
A.
, and
Field
,
D. P.
,
2020
, “
Influence of Microstructural Heterogeneity and Plastic Strain on Geometrically Necessary Dislocation Structure Evolution in Single-Phase and Two-Phase Alloys
,”
Mater. Charact.
,
170
, p.
110690
.
38.
Gussev
,
M. N.
, and
Leonard
,
K. J.
,
2019
, “
In Situ SEM-EBSD Analysis of Plastic Deformation Mechanisms in Neutron-Irradiated Austenitic Steel
,”
J. Nucl. Mater.
,
517
, pp.
45
56
.
You do not currently have access to this content.