Abstract

This paper is aimed at studying the acoustic emission signatures of dominant failure mechanisms encountered during fracture cutting of bovine cortical bone. This is achieved through an orthogonal cutting study performed in a sensor-rich environment comprising a cutting force sensor, acoustic emission sensor, and a high-speed camera. The synchronization of these three sensing modalities allows for the visual identification of the dominant failure modes, while also mapping them to their corresponding acoustic and cutting force metrics. Given their distinctly different underlying microstructures, the haversian and plexiform components of the bovine cortical bone are investigated separately. A total of six dominant failure mechanisms have been confirmed across the haversian and plexiform bone types. Osteon fracture and trans-lamellar fracture have been identified as the mechanisms expending the maximum energy during the fracture cutting of haversian and plexiform bone, respectively. Overall, the acoustic emission and the cutting force metrics are seen to be complementary in characterizing the six failure mechanisms. The findings of this work have implications for tool-mounted sensing modalities that could be used to detect “in-process” failure mechanisms during bone surgical procedures.

References

1.
Hofmann
,
S.
,
Seitlinger
,
G.
,
Djahani
,
O.
, and
Pietsch
,
M.
,
2011
, “
The Painful Knee After TKA: A Diagnostic Algorithm for Failure Analysis
,”
Knee Surgery, Sports Traumatol., Arthrosc.: Official J. ESSKA
,
19
(
9
), pp.
1442
1452
.
2.
Haenle
,
M.
,
Skripitz
,
C.
,
Mittelmeier
,
W.
, and
Skripitz
,
R.
,
2012
, “
Economic Impact of Infected Total Knee Arthroplasty
,”
Sci. World J.
,
2012
, pp.
1
6
.
3.
Oduwole
,
K. O.
,
Molony
,
D. C.
,
Walls
,
R. J.
,
Bashir
,
S. P.
, and
Mulhall
,
K. J.
,
2010
, “
Increasing Financial Burden of Revision Total Knee Arthroplasty
,”
Knee Surgery, Sports Traumatol., Arthrosc.: Official J. ESSKA
,
18
(
7
), pp.
945
948
.
4.
Patil
,
N.
,
Lee
,
K.
,
Huddleston
,
J. I.
,
Harris
,
A. H.
, and
Goodman
,
S. B.
,
2010
, “
Aseptic Versus Septic Revision Total Knee Arthroplasty: Patient Satisfaction, Outcome and Quality of Life Improvement
,”
Knee
,
17
(
3
), pp.
200
203
.
5.
Dall
,
T. M.
,
Gallo
,
P.
,
Koenig
,
L.
,
Gu
,
Q.
, and
Ruiz
,
D.
,
2013
, “
Modeling the Indirect Economic Implications of Musculoskeletal Disorders and Treatment
,”
Cost Effectiveness Resour. Allocation: C/E
,
11
(
1
), p.
5
.
6.
Jacobs
,
C. H.
,
Pope
,
M. H.
,
Berry
,
J. T.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.
7.
Malak
,
S. F. F.
, and
Anderson
,
I. A.
,
2008
, “
Orthogonal Cutting of Cancellous Bone With Application to the Harvesting of Bone Autograft
,”
Med. Eng. Phys.
,
30
(
6
), pp.
717
724
.
8.
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2009
, “
Specifications for Machining the Bovine Cortical Bone in Relation to Its Microstructure
,”
J. Biomech.
,
42
(
16
), pp.
2826
2829
.
9.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
41
55
.
10.
Conward
,
M.
, and
Samuel
,
J.
,
2021
, “
A Microstructure-Based Mechanistic Model for Bone Sawing: Part 1—Cutting Force Predictions
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121009
.
11.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
.
12.
Conward
,
M.
, and
Samuel
,
J.
,
2023
, “
Microstructure-Based Failure Mechanisms Encountered During Fracture Cutting of Age-Varying Bovine Cortical Bone, 2023
,”
ASME J. Manuf. Sci. Eng.
,
145
(
6
), p.
061004
.
13.
Shu
,
L.
, and
Sugita
,
N.
,
2020
, “
Analysis of Fracture, Force, and Temperature in Orthogonal Elliptical Vibration-Assisted Bone Cutting
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103599
.
14.
Sugita
,
N.
,
Osa
,
T.
,
Aoki
,
R.
, and
Mitsuishi
,
M.
,
2009
, “
A New Cutting Method for Bone Based on Its Crack Propagation Characteristics
,”
CIRP Ann.
,
58
(
1
), pp.
113
118
.
15.
Sugita
,
N.
,
Shu
,
L.
,
Shimada
,
T.
,
Oshima
,
M.
,
Kizaki
,
T.
, and
Mitsuishi
,
M.
,
2017
, “
Novel Surgical Machining via an Impact Cutting Method Based on Fracture Analysis With a Discontinuum Bone Model
,”
CIRP Ann.
,
66
(
1
), pp.
65
68
.
16.
Aggelis
,
D. G.
,
Strantza
,
M.
,
Louis
,
O.
,
Boulpaep
,
F.
,
Polyzos
,
D.
, and
van Hemelrijck
,
D.
,
2015
, “
Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors
,”
Sensors
,
15
(
3
), pp.
5803
5819
.
17.
Landis
,
E. N.
, and
Baillon
,
L.
,
2002
, “
Experiments to Relate Acoustic Emission Energy to Fracture Energy of Concrete
,”
ASCE J. Eng. Mech.
,
128
(
6
), pp.
698
702
.
18.
Michlmayr
,
G.
,
Cohen
,
D.
, and
Or
,
D.
,
2011
, “
Sources and Characteristics of Acoustic Emissions From Mechanically Stressed Geologic Granular Media—A Review
,”
Earth-Sci. Rev.
,
112
(
3–4
), pp.
97
114
.
19.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Monitoring Chip Formation, Penetration Depth and Cutting Malfunctions in Bone Micro-Drilling via Acoustic Emission
,”
J. Mater. Process. Technol.
,
229
, pp.
82
93
.
20.
Guan
,
F.
,
Sun
,
Y.
,
Qi
,
X.
,
Hu
,
Y.
,
Yu
,
G.
, and
Zhang
,
J.
,
2018
, “
State Recognition of Bone Drilling Based on Acoustic Emission in Pedicle Screw Operation
,”
Sensors
,
18
(
5
), p.
1484
.
21.
Mishra
,
R.
,
Conward
,
M.
, and
Samuel
,
J.
,
2021
, “
A Microstructure-Based Mechanistic Model for Bone Sawing: Part 2—Acoustic Energy Rate Predictions
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121010
.
22.
Abdel-Wahab
,
A. A.
,
Alam
,
K.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Anisotropic Viscoelastoplastic Properties of Cortical Bone Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
807
820
.
23.
Hoffseth
,
K.
,
Randall
,
C.
,
Chandrasekar
,
S.
,
Hansma
,
P.
, and
Yang
,
H. T. Y.
,
2017
, “
Analyzing the Effect of Hydration on the Wedge Indentation Fracture Behavior of Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
318
326
.
24.
Carnelli
,
D.
,
Lucchini
,
R.
,
Ponzoni
,
M.
,
Contro
,
R.
, and
Vena
,
P.
,
2011
, “
Nanoindentation Testing and Finite Element Simulations of Cortical Bone Allowing for Anisotropic Elastic and Inelastic Mechanical Response
,”
J. Biomech.
,
44
(
10
), pp.
1852
1858
.
25.
Potukuchi
,
S. K. S.
,
Conward
,
M.
, and
Samuel
,
J.
,
2023
,
“Microstructure-Based Finite Element Model for Fracture Cutting of Bovine Cortical Bone
,”
J. Manuf. Process
,
101
, pp.
25
37
.
26.
Krause
,
W. R.
,
1987
, “
Orthogonal Bone Cutting: Saw Design and Operating Characteristics
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
263
271
.
27.
Wiggins
,
K. L.
, and
Malkin
,
S.
,
1978
, “
Orthogonal Machining of Bone
,”
ASME J. Biomech. Eng.
,
100
(
3
), pp.
122
130
.
28.
Conward
,
M.
,
2018
,
Effects of Haversian and Plexiform Components on the Machining of Bovine Cortical Bone (Publication No. 13419372) Doctoral dissertation
,
Rensselaer Polytechnic Institute. ProQuest Dissertations and Theses database
.
29.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2012
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(
2
), pp.
141
149
.
30.
Kapur
,
R. A.
,
2016
, “
Acoustic Emission in Orthopaedics: A State of the Art Review
,”
J. Biomech.
,
49
(
16
), pp.
4065
4072
.
31.
Shridharani
,
J. K.
,
Ortiz-Paparoni
,
M. A.
,
Eynde
,
J. O.
, and
Bass
,
C. R.
,
2021
, “
Acoustic Emissions in Vertebral Cortical Shell Failure
,”
J. Biomech.
,
117
, p.
110227
.
32.
Shrivastava
,
S.
, and
Prakash
,
R.
,
2009
, “
Assessment of Bone Condition by Acoustic Emission Technique: A Review
,”
J. Biomed. Sci. Eng.
,
2
(
3
), pp.
144
154
.
33.
Kishawy
,
H. A.
,
Hegab
,
H.
,
Umer
,
U.
, and
Mohany
,
A.
,
2018
, “
Application of Acoustic Emissions in Machining Processes: Analysis and Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
1391
1407
.
34.
Kataruka
,
A.
,
Mendu
,
K.
,
Okeoghene
,
O.
,
Puthuvelil
,
J.
, and
Akono
,
A.-T.
,
2017
, “
Microscopic Assessment of Bone Toughness Using Scratch Tests
,”
Bone Rep.
,
6
, pp.
17
25
.
35.
Ladani
,
L. J.
,
2021
, “
Applications of Artificial Intelligence and Machine Learning in Metal Additive Manufacturing (2021)
,”
J. Phys.: Mater.
,
4
(
4
), p.
042009
.
You do not currently have access to this content.