Abstract

Inkjet printing (IJP) is one of the promising additive manufacturing techniques that yield many innovations in electronic and biomedical products. In IJP, the products are fabricated by depositing droplets on substrates, and the quality of the products is highly affected by the droplet pinch-off behaviors. Therefore, identifying pinch-off behaviors of droplets is critical. However, annotating the pinch-off behaviors is burdensome since a large amount of images of pinch-off behaviors can be collected. Active learning (AL) is a machine learning technique which extracts human knowledge by iteratively acquiring human annotation and updating the classification model for the pinch-off behaviors identification. Consequently, a good classification performance can be achieved with limited labels. However, during the query process, the most informative instances (i.e., images) are varying and most query strategies in AL cannot handle these dynamics since they are handcrafted. Thus, this paper proposes a multiclass reinforced active learning (MCRAL) framework in which a query strategy is trained by reinforcement learning (RL). We designed a unique intrinsic reward signal to improve the classification model performance. Moreover, how to extract the features from images for pinch-off behavior identification is not trivial. Thus, we used a graph convolutional network for droplet image feature extraction. The results show that MCRAL excels AL and can reduce human efforts in pinch-off behavior identification. We further demonstrated that, by linking the process parameters to the predicted droplet pinch-off behaviors, the droplet pinch-off behavior can be adjusted based on MCRAL.

References

1.
Moya
,
A.
,
Gabriel
,
G.
,
Villa
,
R.
, and
del Campo
,
F. J.
,
2017
, “
Inkjet-Printed Electrochemical Sensors
,”
Curr. Opin. Electrochem.
,
3
(
1
), pp.
29
39
.
2.
O'Donnell
,
J.
,
Kim
,
M.
, and
Yoon
,
H.-S.
,
2017
, “
A Review on Electromechanical Devices Fabricated by Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
010801
.
3.
Joshi
,
K.
,
Velasco
,
V.
, and
Esfandyarpour
,
R.
,
2020
, “
A Low-Cost, Disposable and Portable Inkjet-Printed Biochip for the Developing World
,”
Sensors
,
20
(
12
), p.
3593
.
4.
Xu
,
T.
,
Kincaid
,
H.
,
Atala
,
A.
, and
Yoo
,
J. J.
,
2008
, “
High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021017
.
5.
Segura
,
L. J.
,
Wang
,
T.
,
Zhou
,
C.
, and
Sun
,
H.
,
2021
, “
Online Droplet Anomaly Detection From Streaming Videos in Inkjet Printing
,”
Addit. Manuf.
,
38
, p.
101835
.
6.
Hoath
,
S. D.
,
2016
,
Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets
,
John Wiley & Sons
,
New York
.
7.
Wang
,
T.
,
Kwok
,
T.-H.
, and
Zhou
,
C.
,
2017
, “
In-Situ Droplet Inspection and Control System for Liquid Metal Jet 3D Printing Process
,”
Procedia Manuf.
,
10
, pp.
968
981
.
8.
Xu
,
C.
,
Zhang
,
Z.
,
Huang
,
Y.
, and
Xu
,
H.
,
2019
, “
Phase Diagram of Pinch-Off Behaviors During Drop-on-Demand Inkjetting of Alginate Solutions
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091013
.
9.
Thiévenaz
,
V.
, and
Sauret
,
A.
,
2022
, “
The Onset of Heterogeneity in the Pinch-Off of Suspension Drops
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
13
), p.
e2120893119
.
10.
Zhu
,
P.
, and
Wang
,
L.
,
2019
, “
Droplet Pinch-Off With Pressure Fluctuations
,”
Chem. Eng. Sci.
,
196
, pp.
333
343
.
11.
Roché
,
M.
,
Aytouna
,
M.
,
Bonn
,
D.
, and
Kellay
,
H.
,
2009
, “
Effect of Surface Tension Variations on the Pinch-Off Behavior of Small Fluid Drops in the Presence of Surfactants
,”
Phys. Rev. Lett.
,
103
(
26
), p.
264501
.
12.
Zhang
,
S.
,
Tong
,
H.
,
Xu
,
J.
, and
Maciejewski
,
R.
,
2018
, “
Graph Convolutional Networks: Algorithms, Applications and Open Challenges
,”
Computational Data and Social Networks: Seventh International Conference (CSoNet 2018)
,
Shanghai, China
,
Dec. 18–20
, pp.
79
91
.
13.
Aggarwal
,
C. C.
,
Kong
,
X.
,
Gu
,
Q.
,
Han
,
J.
, and
Yu
,
P. S.
,
2014
, “Active Learning: A Survey,”
Data Classification
,
C. C.
Aggarwal
, ed.,
Chapman and Hall/CRC
,
New York
, pp.
599
634
.
14.
Wang
,
J.
,
Yan
,
Y.
,
Zhang
,
Y.
,
Cao
,
G.
,
Yang
,
M.
, and
Ng
,
M. K.
,
2020
, “
Deep Reinforcement Active Learning for Medical Image Classification
,”
Medical Image Computing and Computer Assisted Intervention (MICCAI 2020): 23rd International Conference
,
Lima, Peru
,
Oct. 4–8
, pp.
33
42
.
15.
Liu
,
M.
,
Buntine
,
W.
, and
Haffari
,
G.
,
2018
, “
Learning How to Actively Learn: A Deep Imitation Learning Approach
,”
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
,
Melbourne, Australia
,
July 15–20
, pp.
1874
1883
.
16.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
,
Riedmiller
,
M.
,
Fidjeland
,
A. K.
, and
Ostrovski
,
G.
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.
17.
Van Hasselt
,
H.
,
Guez
,
A.
, and
Silver
,
D.
,
2016
, “
Deep Reinforcement Learning With Double Q-Learning
,”
Proceedings of the AAAI Conference on Artificial Intelligence
, Vol.
30
,
Phoenix, AZ
,
Feb. 12–17
, pp.
2094
2100
.
18.
Wang
,
Z.
,
Schaul
,
T.
,
Hessel
,
M.
,
Hasselt
,
H.
,
Lanctot
,
M.
, and
Freitas
,
N.
,
2016
, “
Dueling Network Architectures for Deep Reinforcement Learning
,”
Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML)
, Vol.
48
,
New York, NY
,
June 19–24
, pp.
1995
2003
.
19.
Schaul
,
T.
,
Quan
,
J.
,
Antonoglou
,
I.
, and
Silver
,
D.
,
2015
, “
Prioritized Experience Replay
,” preprint arXiv:1511.05952.
20.
Ebert
,
S.
,
Fritz
,
M.
, and
Schiele
,
B.
,
2012
, “
RALF A Reinforced Active Learning Formulation for Object Class Recognition
,”
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Providence, RI
,
June 16–21
, pp.
3626
3633
.
21.
Huang
,
J.
,
Segura
,
L. J.
,
Wang
,
T.
,
Zhao
,
G.
,
Sun
,
H.
, and
Zhou
,
C.
,
2020
, “
Unsupervised Learning for the Droplet Evolution Prediction and Process Dynamics Understanding in Inkjet Printing
,”
Addit. Manuf.
,
35
, p.
101197
.
22.
Jiao
,
T.
,
Lian
,
Q.
,
Zhao
,
T.
, and
Wang
,
H.
,
2021
, “
Influence of Ink Properties and Voltage Parameters on Piezoelectric Inkjet Droplet Formation
,”
Appl. Phys. A
,
127
(
1
), pp.
1
9
.
23.
Tofan
,
T.
,
Kruggel-Emden
,
H.
,
Turla
,
V.
, and
Jasevičius
,
R.
,
2021
, “
Numerical Modeling of the Motion and Interaction of a Droplet of an Inkjet Printing Process With a Flat Surface
,”
Appl. Sci.
,
11
(
2
), p.
527
.
24.
Huang
,
J.
,
Wang
,
T.
,
Segura
,
L. J.
,
Joshi
,
G. S.
,
Sun
,
H.
, and
Zhou
,
C.
,
2020
, “
Spatiotemporal Fusion Network for the Droplet Behavior Recognition in Inkjet Printing
,”
International Manufacturing Science and Engineering Conference
, Vol.
84256
,
Sept. 3
, Paper No.
V001T001A038
.
25.
Wu
,
D.
, and
Xu
,
C.
,
2018
, “
Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101007
.
26.
Mohammadi
,
K.
,
Movahhedy
,
M. R.
, and
Khodaygan
,
S.
,
2019
, “
A Multiphysics Model for Analysis of Droplet Formation in Electrohydrodynamic 3D Printing Process
,”
J. Aerosol Sci.
,
135
, pp.
72
85
.
27.
Zhang
,
L.
,
Zhu
,
Y.
, and
Cheng
,
X.
,
2017
, “
Numerical Investigation of Multi-Droplets Deposited Lines Morphology With a Multiple-Relaxation-Time Lattice Boltzmann Model
,”
Chem. Eng. Sci.
,
171
, pp.
534
544
.
28.
Andalib
,
S.
,
Taira
,
K.
, and
Kavehpour
,
H. P.
,
2021
, “
Data-Driven Time-Dependent State Estimation for Interfacial Fluid Mechanics in Evaporating Droplets
,”
Sci. Rep.
,
11
(
1
), p.
13579
.
29.
Wang
,
J.
, and
Chiu
,
G. T.-C.
,
2020
, “
Data-Driven Drop Formation Modeling in Nanoliter Drop-on-Demand Inkjet Printing
,”
Dynamic Systems and Control Conference
, Vol.
84287
,
Virtual
,
Oct. 5–7
, Paper No.
V002T028A002
.
30.
Li
,
Z.
,
Lee
,
J.
,
Yao
,
F.
, and
Sun
,
H.
,
2021
, “
Quantifying the CVD-Grown Two-Dimensional Materials Via Image Clustering
,”
Nanoscale
,
13
(
36
), pp.
15324
15333
.
31.
Rawat
,
W.
, and
Wang
,
Z.
,
2017
, “
Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
,”
Neural Comput.
,
29
(
9
), pp.
2352
2449
.
32.
Zhang
,
S.
,
Tong
,
H.
,
Xu
,
J.
, and
Maciejewski
,
R.
,
2019
, “
Graph Convolutional Networks: A Comprehensive Review
,”
Comput. Soc. Netw.
,
6
(
1
), pp.
1
23
.
33.
Hong
,
D.
,
Gao
,
L.
,
Yao
,
J.
,
Zhang
,
B.
,
Plaza
,
A.
, and
Chanussot
,
J.
,
2020
, “
Graph Convolutional Networks for Hyperspectral Image Classification
,”
IEEE Trans. Geosci. Remote Sens.
,
59
(
7
), pp.
5966
5978
.
34.
Mou
,
L.
,
Lu
,
X.
,
Li
,
X.
, and
Zhu
,
X. X.
,
2020
, “
Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification
,”
IEEE Trans. Geosci. Remote Sens.
,
58
(
12
), pp.
8246
8257
.
35.
Hemmer
,
P.
,
Kühl
,
N.
, and
Schöffer
,
J.
,
2022
, “DEAL: Deep Evidential Active Learning for Image Classification,”
Deep Learning Applications
,
M. A.
Wani
,
B.
Raj
,
F.
Luo
, and
D.
Dou
, eds., Vol.
3
,
Springer Nature
,
Singapore
, pp.
171
192
.
36.
Chang
,
J.
,
Kim
,
J.
,
Zhang
,
B.-T.
,
Pitt
,
M. A.
, and
Myung
,
J. I.
,
2021
, “
Data-Driven Experimental Design and Model Development Using Gaussian Process With Active Learning
,”
Cogn. Psychol.
,
125
, p.
101360
.
37.
Yue
,
X.
,
Wen
,
Y.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2020
, “
Active Learning for Gaussian Process Considering Uncertainties With Application to Shape Control of Composite Fuselage
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
1
), pp.
36
46
.
38.
Lee
,
C.
,
Wang
,
X.
,
Wu
,
J.
, and
Yue
,
X.
,
2022
, “
Failure-Averse Active Learning for Physics-Constrained Systems
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
12
.
39.
Liu
,
Z.
,
Wang
,
J.
,
Gong
,
S.
,
Lu
,
H.
, and
Tao
,
D.
,
2019
, “
Deep Reinforcement Active Learning for Human-in-the-Loop Person Re-Identification
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR)
,
Seoul, Korea
,
Oct. 27–Nov. 2
, pp.
6122
6131
.
40.
Casanova
,
A.
,
Pinheiro
,
P. O.
,
Rostamzadeh
,
N.
, and
Pal
,
C. J.
,
2020
, “
Reinforced Active Learning for Image Segmentation
,”
International Conference on Learning Representations (ICLR)
,
Virtual
,
Apr. 26–May 1
.
41.
Wu
,
T.
, and
Ortiz
,
J.
,
2021
, “RLAD: Time Series Anomaly Detection through Reinforcement Learning and Active Learning,” preprint arXiv:2104.00543.
42.
Aubret
,
A.
,
Matignon
,
L.
, and
Hassas
,
S.
,
2019
, “A Survey on Intrinsic Motivation in Reinforcement Learning,” preprint arXiv:1908.06976.
43.
Bougie
,
N.
, and
Ichise
,
R.
,
2020
, “
Skill-Based Curiosity for Intrinsically Motivated Reinforcement Learning
,”
Mach. Learn.
,
109
(
3
), pp.
493
512
.
44.
Baranes
,
A.
, and
Oudeyer
,
P.-Y.
,
2013
, “
Active Learning of Inverse Models With Intrinsically Motivated Goal Exploration in Robots
,”
Rob. Auton. Syst.
,
61
(
1
), pp.
49
73
.
45.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “
Semi-Supervised Classification With Graph Convolutional Networks
,”
Fifth International Conference on Learning Representations (ICLR)
,
Toulon, France
,
Apr. 24–26
.
46.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
47.
Li
,
M.
,
Chen
,
S.
,
Chen
,
X.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Tian
,
Q.
,
2019
, “
Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June 15–20
, pp.
3595
3603
.
48.
Zhang
,
H.
,
Zou
,
J.
, and
Zhang
,
L.
,
2022
, “
EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification
,”
IEEE Trans. Geosci. Remote Sens.
,
60
, pp.
1
16
.
49.
Li
,
C.
,
Meng
,
Y.
,
Chan
,
S. H.
, and
Chen
,
Y.-T.
,
2020
, “
Learning 3D-Aware Egocentric Spatial–Temporal Interaction Via Graph Convolutional Networks
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Virtual
,
May 31–June 15
, pp.
8418
8424
.
50.
Danka
,
T.
, and
Horvath
,
P.
,
2018
, “
modAL: A Modular Active Learning Framework for Python
,” preprint arXiv:1805.00979.
51.
Weng
,
J.
,
Chen
,
H.
,
Yan
,
D.
,
You
,
K.
,
Duburcq
,
A.
,
Zhang
,
M.
,
Su
,
Y.
,
Su
,
H.
, and
Zhu
,
J.
,
2022
, “
Tianshou: A Highly Modularized Deep Reinforcement Learning Library
,”
J. Mach. Learn. Res.
,
23
(
267
), pp.
1
6
. https://arxiv.org/abs/2107.14171v2
You do not currently have access to this content.