Abstract

Flow forming and inertia friction welding (IFW) have been widely used as manufacturing processes that produce high-value engineering components. Combining these two advanced processes facilitates the fabrication of near-net shape components leading to optimized designs. This study introduces the joining of flow-formed seamless tubes of MLX®19 maraging steel using the IFW process to fabricate a near-net shape component used in landing gears and missile parts. The as-received material was initially provided ≈30% reduction in thickness from the flow forming trials and then welded at four varying weld energies while maintaining constant friction and forge pressures. The mechanical behavior of the weldments was characterized, and the optimized weld parameters were determined. The concomitant microstructural evolution of the optimized weld was also examined to comprehend the underlying deformation mechanisms. The weld strength, axial shortening, and width of dynamic recrystallization (DRX) displayed an increasing trend with an increase in the weld energy. The weld-zone (WZ) and thermomechanical affected zone (TMAZ) showed the presence of martensite, whereas in the HAZ presence of intermetallic precipitates and reverted austenite was confirmed along with tempered martensite. Based on microstructural evidence, it was concluded that the peak temperature attained in the WZ was above Ac3, whereas in the TMAZ it was in-between Ac1 and Ac3. The evolution of crystallographic texture implied that WZ was subjected to pure shear deformation during the welding whereas the TMAZ experienced a combined shear and compressive deformation.

References

1.
Murthy
,
C. V. S.
,
Gopala Krishna
,
A.
, and
Reddy
,
G. M.
,
2019
, “
Microstructure and Mechanical Properties of Similar and Dissimilar Metal Gas Tungsten Constricted Arc Welds: Maraging Steel to 13-8 Mo Stainless Steel
,”
Defence Technol.
,
15
(
1
), pp.
111
121
.
2.
Mouritz
,
A.
,
2012
, “Introduction to Aerospace Materials,”
Introduction to Aerospace Materials
,
Woodhead Publishing
,
Sawston, Cambridge
, pp.
1
14
.
3.
Xia
,
Q.
,
Long
,
J.
,
Xiao
,
G.
,
Yuan
,
S.
, and
Qin
,
Y.
,
2021
, “
Deformation Mechanism of ZK61 Magnesium Alloy Cylindrical Parts With Longitudinal Inner Ribs During Hot Backward Flow Forming
,”
J. Mater. Process. Technol.
,
296
, p.
117197
.
4.
Cominotti
,
R.
, and
Gentili
,
E.
,
2008
, “
Near Net Shape Technology: An Innovative Opportunity for the Automotive Industry
,”
Robot. Comput. Integr. Manuf.
,
24
(
6
), pp.
722
727
.
5.
Tsivoulas
,
D.
,
da Fonseca
,
J. Q.
,
Tuffs
,
M.
, and
Preuss
,
M.
,
2017
, “
Measurement and Modelling of Textures in Flow Formed Cr-Mo-V Steel Tubes
,”
Mater. Sci. Eng. A
,
685
, pp.
7
18
.
6.
2008
, “Metal Forming and Machining Processes,”
Modeling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods
,
P. M.
Dixit
, and
U. S.
Dixit
, eds.,
Springer London
,
London
, pp.
1
32
.
7.
Cai
,
W.
,
Daehn
,
G.
,
Vivek
,
A.
,
Li
,
J.
,
Khan
,
H.
,
Mishra
,
R. S.
, and
Komarasamy
,
M.
,
2019
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031012
.
8.
Banerjee
,
A.
,
Ntovas
,
M.
,
Da Silva
,
L.
,
Rahimi
,
S.
, and
Wynne
,
B.
,
2021
, “
Inter-Relationship Between Microstructure Evolution and Mechanical Properties in Inertia Friction Welded 8630 Low-Alloy Steel
,”
Arch. Civ. Mech. Eng.
,
21
(
4
), p.
149
.
9.
Banerjee
,
A.
,
Ntovas
,
M.
,
Da Silva
,
L.
, and
Rahimi
,
S.
,
2021
, “
Effect of Rotational Speed and Inertia on the Mechanical Properties and Microstructural Evolution During Inertia Friction Welding of 8630M Steel
,”
Mater. Lett.
,
296
, p.
129906
.
10.
Banerjee
,
A.
,
Ntovas
,
M.
,
Silva
,
L. D.
,
O’Neill
,
R.
, and
Rahimi
,
S.
,
2022
, “
Continuous Drive Friction Welding of AISI 8630 Low-Alloy Steel: Experimental Investigations on Microstructure Evolution and Mechanical Properties
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071001
.
11.
Li
,
W.
,
Vairis
,
A.
,
Preuss
,
M.
, and
Ma
,
T.
,
2016
, “
Linear and Rotary Friction Welding Review
,”
Int. Mater. Rev.
,
61
(
2
), pp.
71
100
.
12.
Lee
,
I. K.
,
Chou
,
C. P.
,
Cheng
,
C. M.
, and
Kuo
,
I. C.
,
2003
, “
Effect of Heat Treatment on Microstructures of Flow Formed C-250 Maraging Steel
,”
Mater. Sci. Technol.
,
19
(
11
), pp.
1595
1602
.
13.
Lee
,
Y. J.
,
Lee
,
I. K.
,
Wu
,
S. C.
,
Kung
,
M. C.
, and
Chou
,
C. P.
,
2007
, “
Effect of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Electron Beam Welded Flow Formed Maraging Steel Weldment
,”
Sci. Technol. Welding Joining
,
12
(
3
), pp.
266
273
.
14.
ASTM E3-11
,
2011
, “
Standard Guide for Preparation of Metallographic Specimens
,”
ASTM E3-11
.
15.
Beausir
,
B.
, and
Fundengerger
,
J.-J.
,
2017
, “
Analysis Tools for Electron and X-ray Diffraction, Atex—Software
,”
Université de Lorraine - Metz
,
2017
.
16.
ASTM E8/E8M-22
,
2022
, “
Standard Test Methods for Tension Testing of Metallic Materials [Metric]
,”
ASTM E8/E8M-22
.
17.
Takada
,
A.
,
Matsushita
,
M.
,
Hayakawa
,
N.
,
Murakami
,
Y.
, and
Oi
,
K.
,
2020
, “
Microstructure and Texture of Friction Stir Welds in Low Carbon Steel Using Prior Austenite Reconstruction Method
,”
Welding Int.
,
34
(
7–9
), pp.
256
266
.
18.
Dhinwal
,
S. S.
,
Toth
,
L. S.
,
Hodgson
,
P. D.
, and
Haldar
,
A.
,
2018
, “
Effects of Processing Conditions on Texture and Microstructure Evolution in Extra-Low Carbon Steel During Multi-Pass Asymmetric Rolling
,”
Materials
,
11
(
8
), p.
1327
.
19.
Özdemir
,
N.
,
Sarsılmaz
,
F.
, and
Hasçalık
,
A.
,
2007
, “
Effect of Rotational Speed on the Interface Properties of Friction-Welded AISI 304L to 4340 Steel
,”
Mater. Des.
,
28
(
1
), pp.
301
307
.
20.
Lu
,
D.
,
You
,
G.
,
Luo
,
J.
,
Ding
,
Y.
,
Zeng
,
S.
, and
Tong
,
X.
,
2020
, “
Effects of Rotational Speed on Microstructure and Mechanical Properties of Inertia Friction-Welded 7005–5083 Aluminum Alloy Joints
,”
J. Mater. Sci.
,
55
(
26
), pp.
12338
12352
.
21.
Lang
,
F. H.
,
Kenyon
,
N.
,
York
,
W. R. C. N.
, and
Council
,
W. R.
,
1971
,
Welding of Maraging Steels
,
Welding Research Council
.
22.
da Silva
,
A. A. M.
,
Meyer
,
A.
,
Santos
,
J. F. d.
,
Kwietniewski
,
C. E. F.
, and
Strohaecker
,
T. R.
,
2004
, “
Mechanical and Metallurgical Properties of Friction-Welded TiC Particulate Reinforced Ti–6Al–4V
,”
Compos. Sci. Technol.
,
64
(
10
), pp.
1495
1501
.
23.
Venkateswara Rao
,
V.
,
Madhusudhan Reddy
,
G.
, and
Sitarama Raju
,
A. V.
,
2010
, “
Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Gas Tungsten Arc Maraging Steel Weldments
,”
Mater. Sci. Technol.
,
26
(
12
), pp.
1459
1468
.
24.
Shamantha
,
C. R.
,
Narayanan
,
R.
,
Iyer
,
K. J. L.
,
Radhakrishnan
,
V. M.
,
Seshadri
,
S. K.
,
Sundararajan
,
S.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Changes During Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel
,”
Mater. Sci. Eng. A
,
287
(
1
), pp.
43
51
.
25.
Gupta
,
R. N.
, and
Raja
,
V. S.
,
2020
, “
Environmentally Assisted Cracking Susceptibility of Dark Etched HAZ/ Parent Metal Interface Region of 18Ni 250 Maraging Steel Weldment
,”
Mater. Sci. Eng. A
,
774
, p.
138911
.
26.
Rajkumar
,
V.
, and
Arivazhagan
,
N.
,
2014
, “
Role of Pulsed Current on Metallurgical and Mechanical Properties of Dissimilar Metal Gas Tungsten Arc Welding of Maraging Steel to Low Alloy Steel
,”
Mater. Des.
,
63
, pp.
69
82
.
27.
Li
,
K.
,
Shan
,
J.
,
Wang
,
C.
, and
Tian
,
Z.
,
2016
, “
Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam
,”
Mater. Sci. Eng. A
,
663
, pp.
157
165
.
28.
Ancey-Rocchi
,
S.
,
Vidal
,
V.
,
Poulain
,
T.
,
Billot
,
T.
,
Bechet
,
D.
,
Binot
,
N.
,
Huleux
,
V.
,
Dehmas
,
M.
, and
Delagnes
,
D.
,
2021
, “
Influence of Austenitization Parameters on the Precipitation Sequence and the Chemical Homogenization of Austenite in a High-Performance Fe–Ni–Cr–Al–Ti–Mo Stainless Maraging Steel
,”
Metall. Mater. Trans. A
,
52
(
10
), pp.
4623
4635
.
29.
Sha
,
W.
,
Leitner
,
H.
,
Guo
,
Z.
, and
Xu
,
W.
,
2012
, “11—Phase Transformations in Maraging Steels,”
Phase Transformations in Steels
,
E
Pereloma
, and
DV
Edmonds
, eds.,
Woodhead Publishing
, pp.
332
362
.
30.
Cui
,
H. B.
,
Lu
,
Y.
,
Xie
,
G. M.
,
Luo
,
Z. A.
,
Wang
,
C. X.
,
Kabwe
,
F. B.
,
Liu
,
Z. G.
, and
Tang
,
X.
,
2020
, “
The Study on Martensite Morphology in the Stir Zone and Its Influence to Impact Toughness During Friction Stir Welding Medium–Mn Ultrahigh Strength Steel
,”
Mater. Sci. Eng. A
,
798
, p.
140102
.
31.
Ma
,
T. J.
,
Tang
,
L. F.
,
Li
,
W. Y.
,
Zhang
,
Y.
,
Xiao
,
Y.
, and
Vairis
,
A.
,
2018
, “
Linear Friction Welding of a Solid-Solution Strengthened Ni-Based Superalloy: Microstructure Evolution and Mechanical Properties Studies
,”
J. Manuf. Processes
,
34
, pp.
442
450
.
32.
Mironov
,
S.
,
Sato
,
Y. S.
, and
Kokawa
,
H.
,
2008
, “
Microstructural Evolution During Friction Stir-Processing of Pure Iron
,”
Acta Mater.
,
56
(
11
), pp.
2602
2614
.
33.
Mesplont
,
C.
,
2002
, “
Phase Transformations and Microstructure-Mechanical Properties Relations in Complex Phase High Strength Steels
,”
PhD Thesis
.
34.
Celada-Casero
,
C.
,
Sietsma
,
J.
, and
Santofimia
,
M. J.
,
2019
, “
The Role of the Austenite Grain Size in the Martensitic Transformation in Low Carbon Steels
,”
Mater. Des.
,
167
, p.
107625
.
35.
Niessen
,
F.
,
Nyyssönen
,
T.
,
Gazder
,
A.
, and
Hielscher
,
R.
,
2021
,
Project : MTEX-free crystallographic texture analysis
.
36.
Fonda
,
R. W.
, and
Knipling
,
K. E.
,
2011
, “
Texture Development in Friction Stir Welds
,”
Sci. Technol. Welding and Joining
,
16
(
4
), pp.
288
294
.
37.
Abbasi
,
M.
,
Nelson
,
T. W.
, and
Sorensen
,
C. D.
,
2012
, “
Transformation and Deformation Texture Study in Friction Stir Processed API X80 Pipeline Steel
,”
Metall. Mater. Trans. A
,
43
(
13
), pp.
4940
4946
.
38.
Field
,
D. P.
,
Nelson
,
T. W.
,
Hovanski
,
Y.
, and
Jata
,
K. V.
,
2001
, “
Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum
,”
Metall. Mater. Trans. A
,
32
(
11
), pp.
2869
2877
.
You do not currently have access to this content.