Abstract

Compared with a single manipulator manufacturing cell, a dual manipulator cooperative system has more advantages in reconfigurability and flexibility. However, there are calibration errors and multi-source disturbances in the collaborative process, which lead to the processing trajectory accuracy defects of large-scale associated machining features. To solve the above problems, a practical path tracking synchronous control algorithm based on position-based visual servoing (PBVS) is proposed in this paper for the dual manipulator cooperative system, the proposed dynamic path tracking cross-coupled sliding mode controller (PTCSMC) scheme can realize dynamic paths correction while executing the pre-planned paths. In addition, for the cross-coupled technology to be applied into the proposed control algorithm for dynamic path tracking based on the real-time feedback of the highly repeatable 3D visual measurement instrument (VMI), the tracking and synchronous errors of the dual manipulators converge synchronously to zero. Finally, the stability of proposed control algorithm is proven by the Lyapunov method. In the end, the real-time line and circle path tracking experimental results using two industrial manipulators demonstrate the effectiveness of the proposed algorithm.

References

1.
Prat
,
P.
, and
Etienne
,
G.
,
2011
, “
Cooperative Robots for Full Automation
,”
SAE AeroTech Congress and Exhibition
, Paper No. 2011-01-2536.
2.
Everhart
,
T.
,
2017
, “
Neighboring Mobile Robot Cell With Drilling and Fastening
,”
SAE Technical Paper Series
, Paper No. 2017-01-2094.
3.
Zhu
,
Q.
,
Xie
,
X.
,
Li
,
C.
,
Xia
,
G.
, and
Liu
,
Q.
,
2019
, “
Kinematic Self-Calibration Method for Dual-Manipulators Based on Optical Axis Constraint
,”
IEEE Access
,
7
, pp.
7768
7782
.
4.
Waurzyniak
,
P.
,
2015
, “
Aerospace Automation Stretches Beyond Drilling and Filling
,”
Manufac. Eng.
,
154
(
4
), pp.
73
86
.
5.
CMU
, “
Laser Coating Removal for Aircraft
,” https://www.nrec.ri.cmu.edu/nrec/solutions/defense/laser-coating-removal-for-aircraft.html., Accessed May 5, 2023.
6.
Basile
,
F.
,
Caccavale
,
F.
,
Chiacchio
,
P.
,
Coppola
,
J.
, and
Curatella
,
C.
,
2012
, “
Task-Oriented Motion Planning for Multi-arm Robotic Systems
,”
Rob. Comput.-Integr. Manuf.
,
28
(
5
), pp.
569
582
.
7.
Lv
,
N.
,
Liu
,
J.
, and
Jia
,
Y.
,
2021
, “
Coordinated Control of Flexible Cables With Human-Like Dual Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
8
), p.
081006
.
8.
Xiao
,
J.
,
Zhao
,
S.
,
Guo
,
H.
,
Huang
,
T.
, and
Lin
,
B.
,
2018
, “
Research on the Collaborative Machining Method for Dual-Robot Mirror Milling
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4071
4084
.
9.
Liu
,
H.
,
Zhu
,
W.
,
Dong
,
H.
, and
Ke
,
Y.
,
2020
, “
Hybrid Visual Servoing for Rivet-in-Hole Insertion Based on Super-Twisting Sliding Mode Control
,”
Int. J. Control Autom. Syst.
,
18
(
8
), pp.
2145
2156
.
10.
Feng
,
Z.
,
Hu
,
G.
,
Sun
,
Y.
, and
Soon
,
J.
,
2020
, “
An Overview of Collaborative Robotic Manipulation in Multi-Robot Systems
,”
Annu. Rev. Control
,
49
(
1
), pp.
113
127
.
11.
Kim
,
R.
,
Balakirsky
,
S.
,
Ahlin
,
K.
,
Marcum
,
M.
, and
Mazumdar
,
A.
,
2021
, “
Enhancing Payload Capacity With Dual-Arm Manipulation and Adaptable Mechanical Intelligence
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021012
.
12.
Zhou
,
Z.
,
Liu
,
J.
, and
Yu
,
J.
,
2022
, “
A Survey of Underwater Multi-robot Systems
,”
IEEE/CAA J. Autom. Sin.
,
9
(
1
), pp.
1
18
.
13.
Tsai
,
J.
,
Wong
,
E.
,
Tao
,
J.
,
Mcgee
,
D. H.
, and
Akeel
,
H.
,
2013
, “
Secondary Position Feedback Control of a Robot
,” Google Patents.
14.
Russell
,
D.
, and
Todd
,
S.
,
2010
, “
Applied Accurate Robotic Drilling for Aircraft Fuselage
,”
SAE Int. J. Aerosp.
,
3
(
1
), pp.
180
186
.
15.
Li
,
B.
,
Tian
,
W.
,
Zhang
,
C.
,
Hua
,
F.
,
Cui
,
G.
, and
Li
,
Y.
,
2022
, “
Positioning Error Compensation of an Industrial Robot Using Neural Networks and Experimental Study
,”
Chin. J. Aeronaut.
,
35
(
2
), pp.
346
360
.
16.
Xiaokang
,
X.
,
Cheng
,
L.
,
Yingjie
,
G.
,
Li
,
J.
, and
Ke
,
Y.
,
2022
, “
A Modeling and Calibration Method of Heavy-Duty Automated Fiber Placement Robot Considering Compliance and Joint-Dependent Errors
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061011
.
17.
Huang
,
C.
,
Xie
,
F.
,
Liu
,
X.
, and
Meng
,
Q.
,
2021
, “
Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031017
.
18.
Shu
,
T.
,
Gharaaty
,
S.
,
Xie
,
W.
,
Joubair
,
A.
, and
Bonev
,
I. A.
,
2018
, “
Dynamic Path Tracking of Industrial Robots With High Accuracy Using Photogrammetry Sensor
,”
IEEE-ASME Trans. Mechatron.
,
23
(
3
), pp.
1159
1170
.
19.
Muñoz-Benavent
,
P.
,
Gracia
,
L.
,
Solanes
,
J. E.
,
Esparza
,
A.
, and
Tornero
,
J.
,
2018
, “
Sliding Mode Control for Robust and Smooth Reference Tracking in Robot Visual Servoing
,”
Int. J. Robust Nonlinear Control
,
28
(
5
), pp.
1728
1756
.
20.
Zhou
,
Z.
,
Liu
,
W.
,
Wang
,
Y.
,
Yue
,
Y.
, and
Zhang
,
J.
,
2022
, “
An Accurate Calibration Method of a Combined Measurement System for Large-Sized Components
,”
Meas. Sci. Technol.
,
33
(
9
), p.
095013
.
21.
Liyanage
,
M. H.
, and
Krouglicof
,
N.
,
2017
, “
An Embedded System for a High-Speed Manipulator With Single Time Scale Visual Servoing
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
071007
.
22.
Wang
,
C.
,
Lin
,
C. Y.
, and
Tomizuka
,
M.
,
2014
, “
Statistical Learning Algorithms to Compensate Slow Visual Feedback for Industrial Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
3
), p.
031011
.
23.
Liu
,
S.
,
Liu
,
C.
,
Liu
,
Z.
,
Xie
,
Y.
,
Xu
,
J.
, and
Chen
,
K.
,
2014
, “
Laser Tracker-Based Control for Peg-in-Hole Assembly Robot
,”
Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent
,
Hong Kong, China
,
June 4–7
.
24.
Stadelmann
,
L.
,
Sandy
,
T.
,
Thoma
,
A.
, and
Buchli
,
J.
,
2019
, “
End-Effector Pose Correction for Versatile Large-Scale Multi-robotic Systems
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
546
553
.
25.
Tan
,
N.
,
Yu
,
P.
,
Zhong
,
Z.
, and
Ni
,
F.
,
2022
, “
A New Noise-Tolerant Dual-Neural-Network Scheme for Robust Kinematic Control of Robotic Arms With Unknown Models
,”
IEEE/CAA J. Autom. Sin.
,
9
(
10
), pp.
1778
1791
.
26.
Li
,
P.
,
Shu
,
T.
,
Xie
,
W.
, and
Tian
,
W.
,
2021
, “
Dynamic Visual Servoing of a 6-RSS Parallel Robot Based on Optical CMM
,”
J. Intell. Rob. Syst.
,
102
(
2
), p.
40
.
27.
Gharaaty
,
S.
,
Shu
,
T.
,
Joubair
,
A.
,
Xie
,
W. F.
, and
Bonev
,
I. A.
,
2018
, “
Online Pose Correction of an Industrial Robot Using an Optical Coordinate Measure Machine System
,”
Int. J. Adv. Rob. Syst.
,
15
(
4
), p.
1729881418787915
.
28.
Zhao
,
Y. M.
,
Lin
,
Y.
,
Xi
,
F.
,
Guo
,
S.
, and
Ouyang
,
P.
,
2016
, “
Switch-Based Sliding Mode Control for Position-Based Visual Servoing of Robotic Riveting System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041010
.
29.
Wu
,
J.
,
Jin
,
Z.
,
Liu
,
A.
,
Yu
,
L.
, and
Yang
,
F.
,
2022
, “
A Survey of Learning-Based Control of Robotic Visual Servoing Systems
,”
J. Frankl. Inst.-Eng. Appl. Math.
,
359
(
1
), pp.
556
577
.
30.
Brahmi
,
A.
,
Saad
,
M.
,
Gauthier
,
G.
,
Zhu
,
W. H.
, and
Ghommam
,
J.
,
2017
, “
Adaptive Control of Multiple Mobile Manipulators Transporting a Rigid Object
,”
Int. J. Control Autom. Syst.
,
15
(
4
), pp.
1779
1789
.
31.
Gracia
,
L.
,
Sala
,
A.
, and
Garelli
,
F.
,
2014
, “
Robot Coordination Using Task-Priority and Sliding-Mode Techniques
,”
Rob. Comput.-Integr. Manuf.
,
30
(
1
), pp.
74
89
.
32.
Dong
,
J.
,
He
,
B.
,
Ming
,
M.
,
Zhang
,
C.
, and
Li
,
G.
,
2019
, “
Design of Open-Closed-Loop Iterative Learning Control With Variable Stiffness for Multiple Flexible Manipulator Robot Systems
,”
IEEE Access
,
7
, pp.
23163
23168
.
33.
Jin
,
L.
,
Liang
,
S.
,
Luo
,
X.
, and
Zhou
,
M.
,
2023
, “
Distributed and Time-Delayed -Winner-Take-All Network for Competitive Coordination of Multiple Robots
,”
IEEE Trans. Cybern.
,
53
(
1
), pp.
641
652
.
34.
Lin
,
F.
,
Chou
,
P.
,
Chen
,
C.
, and
Lin
,
Y.
,
2012
, “
DSP-Based Cross-Coupled Synchronous Control for Dual Linear Motors Via Intelligent Complementary Sliding Mode Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
1061
1073
.
35.
Duan
,
J.
,
Gan
,
Y.
,
Chen
,
M.
, and
Dai
,
X.
,
2019
, “
Symmetrical Adaptive Variable Admittance Control for Position/Force Tracking of Dual-Arm Cooperative Manipulators With Unknown Trajectory Deviations
,”
Rob. Comput.-Integr. Manuf.
,
57
(
10
), pp.
357
369
.
36.
Sun
,
D.
,
Shao
,
X.
, and
Feng
,
G.
,
2007
, “
A Model-Free Cross-Coupled Control for Position Synchronization of Multi-axis Motions: Theory and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
15
(
2
), pp.
306
314
.
37.
Koren
,
Y.
,
1980
, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
4
), pp.
265
272
.
38.
Dong
,
S.
, and
Mills
,
J. K.
,
2002
, “
Adaptive Synchronized Control for Coordination of Two Robot Manipulators
,”
IEEE International Conference on Robotics and Automation (Cat No02CH37292)
,
Washington, DC
,
May 11–15
.
39.
Zhao
,
D.
, and
Zhu
,
Q.
,
2014
, “
Position Synchronised Control of Multiple Robotic Manipulators Based on Integral Sliding Mode
,”
Int. J. Syst. Sci.
,
45
(
3
), pp.
556
570
.
40.
Dong
,
S.
, and
Mills
,
J. K.
,
2002
, “
Adaptive Synchronized Control for Coordination of Multirobot Assembly Tasks
,”
IEEE Trans. Rob. Autom.
,
18
(
4
), pp.
498
510
.
41.
Yuan
,
J. S.-C.
,
1989
, “
A General Photogrammetric Method for Determining Object Position and Orientation
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
129
142
.
42.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.