Abstract

Human–robot collaboration (HRC) has been identified as a highly promising paradigm for human-centric smart manufacturing in the context of Industry 5.0. In order to enhance both human well-being and robotic flexibility within HRC, numerous research efforts have been dedicated to the exploration of human body perception, but many of these studies have focused only on specific facets of human recognition, lacking a holistic perspective of the human operator. A novel approach to addressing this challenge is the construction of a human digital twin (HDT), which serves as a centralized digital representation of various human data for seamless integration into the cyber-physical production system. By leveraging HDT, performance and efficiency optimization can be further achieved in an HRC system. However, the implementation of visual perception-based HDT remains underreported, particularly within the HRC realm. To this end, this study proposes an exemplary vision-based HDT model for highly dynamic HRC applications. The model mainly consists of a convolutional neural network that can simultaneously model the hierarchical human status including 3D human posture, action intention, and ergonomic risk. Then, on the basis of the constructed HDT, a robotic motion planning strategy is further introduced with the aim of adaptively optimizing the robotic motion trajectory. Further experiments and case studies are conducted in an HRC scenario to demonstrate the effectiveness of our approach.

References

1.
Breque
,
M.
,
De Nul
,
L.
, and
Petridis
,
A.
,
2021
, “
Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry
,”
European Commission, Directorate-General for Research and Innovation
,
Luxembourg
.
2.
Wang
,
L.
,
Gao
,
R.
,
Váncza
,
J.
,
Krüger
,
J.
,
Wang
,
X. V.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2019
, “
Symbiotic Human–Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
2
), pp.
701
726
.
3.
Li
,
S.
,
Zheng
,
P.
,
Liu
,
S.
,
Wang
,
Z.
,
Wang
,
X. V.
,
Zheng
,
L.
, and
Wang
,
L.
,
2023
, “
Proactive Human–Robot Collaboration: Mutual-Cognitive, Predictable, and Self-organising Perspectives
,”
Robot. Comput. Integr. Manuf.
,
81
, p.
102510
.
4.
Fan
,
J.
,
Zheng
,
P.
, and
Li
,
S.
,
2022
, “
Vision-Based Holistic Scene Understanding Towards Proactive Human–Robot Collaboration
,”
Robot. Comput. Integr. Manuf.
,
75
, p.
102304
.
5.
Wang
,
W.
,
Li
,
R.
,
Diekel
,
Z. M.
,
Chen
,
Y.
,
Zhang
,
Z.
, and
Jia
,
Y.
,
2018
, “
Controlling Object Hand-Over in Human–Robot Collaboration Via Natural Wearable Sensing
,”
IEEE Trans. Human Mach. Syst.
,
49
(
1
), pp.
59
71
.
6.
Vianello
,
L.
,
Mouret
,
J.-B.
,
Dalin
,
E.
,
Aubry
,
A.
, and
Ivaldi
,
S.
,
2021
, “
Human Posture Prediction During Physical Human–Robot Interaction
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
6046
6053
.
7.
Liu
,
H.
, and
Wang
,
L.
,
2021
, “
Collision-Free Human–Robot Collaboration Based on Context Awareness
,”
Robot. Comput. Integr. Manuf.
,
67
, p.
101997
.
8.
Parsa
,
B.
,
Samani
,
E. U.
,
Hendrix
,
R.
,
Devine
,
C.
,
Singh
,
S. M.
,
Devasia
,
S.
, and
Banerjee
,
A. G.
,
2019
, “
Toward Ergonomic Risk Prediction Via Segmentation of Indoor Object Manipulation Actions Using Spatiotemporal Convolutional Networks
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3153
3160
.
9.
Wang
,
B.
,
Zhou
,
H.
,
Yang
,
G.
,
Li
,
X.
, and
Yang
,
H.
,
2022
, “
Human Digital Twin (HDT) Driven Human-Cyber-Physical Systems: Key Technologies and Applications
,”
Chin. J. Mech. Eng.
,
35
(
1
), pp.
1
6
.
10.
Miller
,
M. E.
, and
Spatz
,
E.
,
2022
, “
A Unified View of a Human Digital Twin
,”
Human Intell. Syst. Integr.
,
4
(
1
), pp.
23
33
.
11.
Shengli
,
W.
,
2021
, “
Is Human Digital Twin Possible
?”
Comput. Methods Prog. Biomed. Update
,
1
, p.
100014
.
12.
Wang
,
P.
,
Liu
,
H.
,
Wang
,
L.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning-Based Human Motion Recognition for Predictive Context-Aware Human–Robot Collaboration
,”
CIRP Ann.
,
67
(
1
), pp.
17
20
.
13.
Dimitropoulos
,
N.
,
Togias
,
T.
,
Zacharaki
,
N.
,
Michalos
,
G.
, and
Makris
,
S.
,
2021
, “
Seamless Human–Robot Collaborative Assembly Using Artificial Intelligence and Wearable Devices
,”
Appl. Sci.
,
11
(
12
), p.
5699
.
14.
Li
,
S.
,
Zheng
,
P.
,
Fan
,
J.
, and
Wang
,
L.
,
2021
, “
Toward Proactive Human–Robot Collaborative Assembly: A Multimodal Transfer-Learning-Enabled Action Prediction Approach
,”
IEEE Trans. Ind. Electron.
,
69
(
8
), pp.
8579
8588
.
15.
Kim
,
W.
,
Peternel
,
L.
,
Lorenzini
,
M.
,
Babič
,
J.
, and
Ajoudani
,
A.
,
2021
, “
A Human–Robot Collaboration Framework for Improving Ergonomics During Dexterous Operation of Power Tools
,”
Robot. Comput. Integr. Manuf.
,
68
, p.
102084
.
16.
El Makrini
,
I.
,
Mathijssen
,
G.
,
Verhaegen
,
S.
,
Verstraten
,
T.
, and
Vanderborght
,
B.
,
2022
, “
A Virtual Element-Based Postural Optimization Method for Improved Ergonomics During Human–Robot Collaboration
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
3
), pp.
1772
1783
.
17.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
,
1
(
2014
), pp.
1
7
.
18.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
.
19.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
29
(
A
), pp.
36
52
.
20.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
21.
Liu
,
S.
,
Lu
,
Y.
,
Zheng
,
P.
,
Shen
,
H.
, and
Bao
,
J.
,
2022
, “
Adaptive Reconstruction of Digital Twins for Machining Systems: A Transfer Learning Approach
,”
Robot. Comput. Integr. Manuf.
,
78
, p.
102390
.
22.
Yin
,
Y.
,
Zheng
,
P.
,
Li
,
C.
, and
Wang
,
L.
,
2023
, “
A State-of-the-Art Survey on Augmented Reality-Assisted Digital Twin for Futuristic Human-Centric Industry Transformation
,”
Robot. Comput. Integr. Manuf.
,
81
, p.
102515
.
23.
Keung
,
K. L.
,
Lee
,
C. K.
,
Ji
,
P.
, and
Ng
,
K. K.
,
2020
, “
Cloud-Based Cyber-Physical Robotic Mobile Fulfillment Systems: A Case Study of Collision Avoidance
,”
IEEE Access
,
8
, pp.
89318
89336
.
24.
Mourtzis
,
D.
,
Angelopoulos
,
J.
,
Panopoulos
,
N.
, and
Kardamakis
,
D.
,
2021
, “
A Smart Iot Platform for Oncology Patient Diagnosis Based on AI: Towards the Human Digital Twin
,”
Procedia CIRP
,
104
, pp.
1686
1691
.
25.
Hu
,
Z.
,
Lou
,
S.
,
Xing
,
Y.
,
Wang
,
X.
,
Cao
,
D.
, and
Lv
,
C.
,
2022
, “
Review and Perspectives on Driver Digital Twin and Its Enabling Technologies for Intelligent Vehicles
,”
IEEE Trans. Intell. Veh.
,
7
(
3
), pp.
417
440
.
26.
Bilberg
,
A.
, and
Malik
,
A. A.
,
2019
, “
Digital Twin Driven Human–Robot Collaborative Assembly
,”
CIRP Ann.
,
68
(
1
), pp.
499
502
.
27.
Sun
,
X.
,
Zhang
,
R.
,
Liu
,
S.
,
Lv
,
Q.
,
Bao
,
J.
, and
Li
,
J.
,
2022
, “
A Digital Twin-Driven Human–Robot Collaborative Assembly-Commissioning Method for Complex Products
,”
Int. J. Adv. Manuf. Technol.
,
118
(
9
), pp.
3389
3402
.
28.
Ramasubramanian
,
A. K.
,
Mathew
,
R.
,
Kelly
,
M.
,
Hargaden
,
V.
, and
Papakostas
,
N.
,
2022
, “
Digital Twin for Human–Robot Collaboration in Manufacturing: Review and Outlook
,”
Appl. Sci.
,
12
(
10
), p.
4811
.
29.
Yi
,
S.
,
Liu
,
S.
,
Xu
,
X.
,
Wang
,
X. V.
,
Yan
,
S.
, and
Wang
,
L.
,
2022
, “
A Vision-Based Human–Robot Collaborative System for Digital Twin
,”
Procedia CIRP
,
107
, pp.
552
557
.
30.
Li
,
H.
,
Ma
,
W.
,
Wang
,
H.
,
Liu
,
G.
,
Wen
,
X.
,
Zhang
,
Y.
,
Yang
,
M.
,
Luo
,
G.
,
Xie
,
G.
, and
Sun
,
C.
,
2022
, “
A Framework and Method for Human–Robot Cooperative Safe Control Based on Digital Twin
,”
Adv. Eng. Inform.
,
53
, p.
101701
.
31.
Wang
,
J.
,
Sun
,
K.
,
Cheng
,
T.
,
Jiang
,
B.
,
Deng
,
C.
,
Zhao
,
Y.
,
Liu
,
D.
,
Mu
,
Y.
,
Tan
,
M.
,
Wang
,
X.
,
Liu
,
W.
, and
Xiao
,
B.
,
2020
, “
Deep High-Resolution Representation Learning for Visual Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
10
), pp.
3349
3364
.
32.
Loper
,
M.
,
Mahmood
,
N.
,
Romero
,
J.
,
Pons-Moll
,
G.
, and
Black
,
M. J.
,
2015
, “
SMPL: A Skinned Multi-person Linear Model
,”
ACM Trans. Graph. (Proc. SIGGRAPH Asia)
,
34
(
6
), pp.
1
16
.
33.
Kanazawa
,
A.
,
Black
,
M. J.
,
Jacobs
,
D. W.
, and
Malik
,
J.
,
2018
, “
End-to-End Recovery of Human Shape and Pose
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Salt Lake City, UT
,
June 18–23
, pp.
7122
7131
.
34.
Kocabas
,
M.
,
Huang
,
C.-H. P.
,
Hilliges
,
O.
, and
Black
,
M. J.
,
2021
, “
Pare: Part Attention Regressor for 3d Human Body Estimation
,”
2021 IEEE/CVF International Conference on Computer Vision (ICCV)
,
Virtual
,
Oct. 11–17
, pp.
11127
11137
.
35.
Hignett
,
S.
, and
McAtamney
,
L.
,
2000
, “
Rapid Entire Body Assessment (REBA)
,”
Appl. Ergon.
,
31
(
2
), pp.
201
205
.
36.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2017
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
6
), pp.
1137
1149
.
37.
Foukarakis
,
M.
,
Leonidis
,
A.
,
Antona
,
M.
, and
Stephanidis
,
C.
,
2014
, “
Combining Finite State Machine and Decision-Making Tools for Adaptable Robot Behavior
,”
International Conference on Universal Access in Human–Computer Interaction
,
Heraklion, Crete, Greece
,
June 22–27
, Springer, pp.
625
635
.
38.
Liu
,
P.
,
Zhang
,
K.
,
Tateo
,
D.
,
Jauhri
,
S.
,
Peters
,
J.
, and
Chalvatzaki
,
G.
,
2022
, “
Regularized Deep Signed Distance Fields for Reactive Motion Generation
,”
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
6673
6680
.
39.
Guan
,
S.
,
Xu
,
J.
,
He
,
M. Z.
,
Wang
,
Y.
,
Ni
,
B.
, and
Yang
,
X.
,
2022
, “
Out-of-Domain Human Mesh Reconstruction Via Dynamic Bilevel Online Adaptation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
4
), pp.
5070
5086
.
40.
Yan
,
S.
,
Xiong
,
Y.
, and
Lin
,
D.
,
2018
, “
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
,”
The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18)
,
New Orleans, LA
,
2018 Feb. 2–7
,
Vol. 32, pp. 7444–7452
.
41.
Parsa
,
B.
, and
Banerjee
,
A. G.
,
2021
, “
A Multi-task Learning Approach for Human Activity Segmentation and Ergonomics Risk Assessment
,”
2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
,
Virtual
,
Jan. 5–9
, pp.
2352
2362
.
You do not currently have access to this content.