Abstract

In the midst of a huge demand for high-precision miniaturized medical implants made up of potential biomaterials, the biomedical Ti-6Al-4V alloy meets the uncompromising standards for longevity, biocompatibility, and sterilizability required to interact with living cells in medical settings. This research tailored the existing capabilities of a traditional micro-electric discharge machining (µ-EDM) setup by adding 0, 2, 4, 6, 8, and 10 g/l bioactive zinc powder particle concentrations (PPCs) to the dielectric. A copper and brass micro-tool electrode (C-µ-TE and B-µ-TE) was employed in association with each PPC. Experiments were executed using the one-variable-at-a-time (OVAT) approach. Machining time and dimensional deviation were chosen as the response variables of Zn powder mixed-micro-EDM (Zn-PM-µ-EDM). According to the analytical findings, the combination of C-µ-TE and 6 g/l Zn PPC achieved 23.52%, 3.29%, and 17.96% lesser machining time, dimensional deviation, and recast layer thickness, respectively, compared to the B-µ-TE. The detailed study of this surface endorsed a significant modification in terms of improved recast layer thickness (26.44 µm), topography (Ra = 743.65 nm), and wettability (contact angle < 90 deg), suggesting its dental application. In addition, the observation of ZnO and TiO in X-ray diffraction and appealing in vitro cytocompatibility encourage the subsequent biological and therapeutic studies to validate the anticipated antiviral activity of the modified Ti-6Al-4V alloy surface against coronavirus (COVID-19).

References

1.
Mordor Intelligence
,
2021
, “
Biomaterials Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026)
,” https://www.mordorintelligence.com/industry-reports/biomaterials-market, Accessed May 11, 2021.
2.
Food and Drug Administration (FDA)
,
2019
, “
Implants and Prosthetics
,” https://www.fda.gov/medical-devices/products-and-medical-procedures/implants-and-prosthetics, Accessed May 23, 2021.
3.
Zhang
,
L. C.
, and
Chen
,
L. Y.
,
2019
, “
A Review on Biomedical Titanium Alloys: Recent Progress and Prospect
,”
Adv. Eng. Mater.
,
21
(
4
), pp.
1
29
.
4.
Fukuda
,
A.
,
Takemoto
,
M.
,
Saito
,
T.
,
Fujibayashi
,
S.
,
Neo
,
M.
,
Yamaguchi
,
S.
,
Kizuki
,
T.
,
Matsushita
,
T.
,
Niinomi
,
M.
,
Kokubo
,
T.
, and
Nakamura
,
T.
,
2011
, “
Bone Bonding Bioactivity of Ti Metal and Ti–Zr–Nb–Ta Alloys With Ca Ions Incorporated on Their Surfaces by Simple Chemical and Heat Treatments
,”
Acta Biomater.
,
7
(
3
), pp.
1379
1386
.
5.
Oshida
,
Y.
,
2013
, “Surface Modifications,”
Bioscience and Bioengineering of Titanium Materials
,
Elsevier
, pp.
341
456
.
6.
Xue
,
T.
,
Attarilar
,
S.
,
Liu
,
S.
,
Liu
,
J.
,
Song
,
X.
,
Li
,
L.
,
Zhao
,
B.
, and
Tang
,
Y.
,
2020
, “
Surface Modification Techniques of Titanium and Its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review
,”
Front. Bioeng. Biotechnol.
,
8
, p.
1261
.
7.
Cooper
,
B. G.
,
Bordeianu
,
C.
,
Nazarian
,
A.
,
Snyder
,
B. D.
, and
Grinstaff
,
M. W.
,
2018
, “
Active Agents, Biomaterials, and Technologies to Improve Biolubrication and Strengthen Soft Tissues
,”
Biomaterials
,
181
, pp.
210
226
.
8.
Davis
,
R.
,
Singh
,
A.
,
Sabino
,
R. M.
,
Pereira
,
R. B. D.
,
Popat
,
K.
,
Soares
,
P.
, and
Jackson
,
M. J.
,
2021
, “
Performance Investigation of Cryo-Treated End Mill on the Mechanical and In Vitro Behavior of Hybrid-Lubri-Coolant-Milled Ti-6Al-4V Alloy
,”
J. Manuf. Processes
,
71
, pp.
472
488
.
9.
Aliyu
,
A. A.
,
Abdul-Rani
,
A. M.
,
Ginta
,
T. L.
,
Prakash
,
C.
,
Axinte
,
E.
,
Razak
,
M. A.
, and
Ali
,
S.
,
2017
, “
A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants
,”
Adv. Mater. Sci. Eng.
,
2017
, pp.
1
23
.
10.
Talla
,
G.
,
Gangopadhayay
,
S.
, and
Biswas
,
C. K.
,
2017
, “
State of the Art in Powder-Mixed Electric Discharge Machining: A Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
14
), pp.
2511
2526
.
11.
Joshi
,
A. Y.
, and
Joshi
,
A. Y.
,
2019
, “
A Systematic Review on Powder Mixed Electrical Discharge Machining
,”
Heliyon
,
5
(
12
), p.
e02963
.
12.
Bui
,
V. D.
,
Mwangi
,
J. W.
, and
Schubert
,
A.
,
2019
, “
Powder Mixed Electrical Discharge Machining for Antibacterial Coating on Titanium Implant Surfaces
,”
J. Manuf. Processes
,
44
, pp.
261
270
.
13.
Kolli
,
M.
, and
Kumar
,
A.
,
2014
, “
Effect of Boron Carbide Powder Mixed Into Dielectric Fluid on Electrical Discharge Machining of Titanium Alloy
,”
Procedia Mater. Sci.
,
5
, pp.
1957
1965
.
14.
Kolli
,
M.
, and
Kumar
,
A.
,
2017
, “
Surfactant and Graphite Powder–Assisted Electrical Discharge Machining of Titanium Alloy
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
4
), pp.
641
657
.
15.
Alam
,
S. T.
,
Amin
,
A. N.
,
Hossain
,
M. I.
,
Huq
,
M.
, and
Tamim
,
S. H.
,
2021
, “
Performance Evaluation of Graphite and Titanium Oxide Powder Mixed Dielectric for Electric Discharge Machining of Ti–6Al–4V
,”
SN Appl. Sci.
,
3
(
4
), pp.
1
12
.
16.
Yaşar
,
H.
, and
Ekmekci
,
B.
,
2014
, “
Ti-6Al-4V Surfaces in SiC Powder Mixed Electrical Discharge Machining
,”
Adv. Mater. Res.
,
856
, pp.
226
230
.
17.
Li
,
L.
,
Zhao
,
L.
,
Li
,
Z. Y.
,
Feng
,
L.
, and
Bai
,
X.
,
2017
, “
Surface Characteristics of Ti-6Al-4V by SiC Abrasive-Mixed EDM With Magnetic Stirring
,”
Mater. Manuf. Processes
,
32
(
1
), pp.
83
86
.
18.
Öpöz
,
T. T.
,
Yaşar
,
H.
,
Ekmekci
,
N.
, and
Ekmekci
,
B.
,
2018
, “
Particle Migration and Surface Modification on Ti6Al4V in SiC Powder Mixed Electrical Discharge Machining
,”
J. Manuf. Processes
,
31
, pp.
744
758
.
19.
Joshi
,
A. Y.
, and
Joshi
,
A. Y.
,
2021
, “
Feasibility Analysis of Powder-Mixed Deionized Water as Dielectric for Machining Ti6Al4V
,”
J. Inst. Eng. (India): C
,
102
(
2
), pp.
337
347
.
20.
Gosai
,
N. D.
, and
Joshi
,
A. Y.
,
2016
, “
Experimental Investigation and Optimization of Process Parameters Used in the Silicon Powder Mixed Electro Discharge Machining of Ti-6Al-4V Alloy Using Response Surface Methodology
,”
J. Manuf. Sci. Prod.
,
16
(
1
), pp.
21
32
.
21.
Shabgard
,
M.
, and
Khosrozadeh
,
B.
,
2017
, “
Investigation of Carbon Nanotube Added Dielectric on the Surface Characteristics and Machining Performance of Ti–6Al–4V Alloy in EDM Process
,”
J. Manuf. Processes
,
25
, pp.
212
219
.
22.
Kumar
,
S. S.
,
Varol
,
T.
,
Canakci
,
A.
,
Kumaran
,
S. T.
, and
Uthayakumar
,
M.
,
2021
, “
A Review on the Performance of the Materials by Surface Modification Through EDM
,”
Int. J. Lightweight Mater. Manuf.
,
4
(
1
), pp.
127
144
.
23.
Patel
,
S.
,
Thesiya
,
D.
, and
Rajurkar
,
A.
,
2018
, “
Aluminium Powder Mixed Rotary Electric Discharge Machining (PMEDM) on Inconel 718
,”
Aust. J. Mech. Eng
,
16
(
1
), pp.
21
30
.
24.
Kumar
,
A.
,
Mandal
,
A.
,
Dixit
,
A. R.
, and
Das
,
A. K.
,
2018
, “
Performance Evaluation of Al2O3 Nano Powder Mixed Dielectric for Electric Discharge Machining of Inconel 825
,”
Mater. Manuf. Processes
,
33
(
9
), pp.
986
995
.
25.
Peças
,
P.
, and
Henriques
,
E.
,
2003
, “
Influence of Silicon Powder-Mixed Dielectric on Conventional Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1465
1471
.
26.
Ekmekci
,
B.
,
Yaşar
,
H.
, and
Ekmekci
,
N.
,
2016
, “
A Discharge Separation Model for Powder Mixed Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p. 081006.
27.
Fong
,
T. Y.
, and
Chen
,
F. C.
,
2005
, “
Investigation Into Some Surface Characteristics of Electrical Discharge Machined SKD-11 Using Powder-Suspension Dielectric Oil
,”
J. Mater. Process. Technol.
,
170
(
1–2
), pp.
385
391
.
28.
Ekmekci
,
N.
, and
Ekmekci
,
B.
,
2016
, “
Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid
,”
Mater. Manuf. Processes
,
31
(
13
), pp.
1663
1670
.
29.
Ekmekci
,
N.
, and
Ekmekci
,
B.
,
2014
, “
Hydroxyapatite Deposition Onto Ti-6Al-4V Surface in Powder Mixed Electrical Discharge Machining
,”
Adv. Mater. Res.
,
856
, pp.
205
209
.
30.
Opoz
,
T.
,
Yasar
,
H.
,
Murphy
,
M.
,
Ekmekci
,
N.
, and
Ekmekci
,
B.
,
2019
, “
Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Application
,”
Int. J. Adv. Eng. Pure Sci.
31.
Bui
,
V. D.
,
Mwangi
,
J. W.
,
Meinshausen
,
A. K.
,
Mueller
,
A. J.
,
Bertrand
,
J.
, and
Schubert
,
A.
,
2020
, “
Antibacterial Coating of Ti-6Al-4V Surfaces Using Silver Nano-Powder Mixed Electrical Discharge Machining
,”
Surf. Coat. Technol.
,
383
.
32.
Camara
,
C.
,
Peris-Lopez
,
P.
, and
Tapiador
,
J. E.
,
2015
, “
Security and Privacy Issues in Implantable Medical Devices: A Comprehensive Survey
,”
J. Biomed. Inform.
,
55
, pp.
272
289
.
33.
Packianather
,
M. S.
,
Le
,
C. H.
,
Pham
,
D. T.
, and
Le
,
H. Q.
,
2018
, “
Advanced Micro and Nano Manufacturing Technologies Used in Medical Domain
,”
IFMBE Proc.
,
63
, pp.
637
642
.
34.
Davis
,
R.
,
Singh
,
A.
,
Debnath
,
K.
,
Sabino
,
R. M.
,
Popat
,
K.
,
da Silva
,
L. R. R.
,
Soares
,
P.
, and
Machado
,
Á. R.
,
2021
, “
Surface Modification of Medical-Grade Ni55.6Ti44.4 Alloy via Enhanced Machining Characteristics of Zn Powder Mixed-μ-EDM
,”
Surf. Coat. Technol.
,
425
, p.
127725
.
35.
Kibria
,
G.
,
Sarkar
,
B. R.
,
Pradhan
,
B. B.
, and
Bhattacharyya
,
B.
,
2010
, “
Comparative Study of Different Dielectrics for Micro-EDM Performance During Microhole Machining of Ti-6Al-4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
48
(
5–8
), pp.
557
570
.
36.
Kibria
,
G.
, and
Bhattacharyya
,
B.
,
2011
, “
Investigation Into Micro-Hole Geometrical Accuracy During Micro-EDM of Ti-6Al-4V Employing Different Dielectrics
,”
Int. J. Mach. Mach. Mater.
,
10
(
4
), pp.
310
325
.
37.
Kuriachen
,
B.
, and
Mathew
,
J.
,
2016
, “
Effect of Powder Mixed Dielectric on Material Removal and Surface Modification in Microelectric Discharge Machining of Ti-6Al-4V
,”
Mater. Manuf. Processes
,
31
(
4
), pp.
439
446
.
38.
Arun Pillai
,
K. V.
,
Hariharan
,
P.
, and
Krishna Murthy
,
R.
,
2020
, “
Micro ED Milling of Ti-6Al-4V with SiC Nano Powder Mixed Dielectrics at Different Ranges of Discharge Energy
,”
Silicon
.
39.
Tiwary
,
A. P.
,
Pradhan
,
B. B.
, and
Bhattacharyya
,
B.
,
2019
, “
Influence of Various Metal Powder Mixed Dielectric on Micro-EDM Characteristics of Ti-6Al-4V
,”
Mater. Manuf. Processes
,
34
(
10
), pp.
1103
1119
.
40.
Liu
,
C.
,
Rashid
,
A.
,
Jahan
,
M. P.
, and
Ma
,
J.
,
2019
, “
Machining of High Aspect Ratio Micro-Holes on Titanium Alloy Using Silver Nano Powder Mixed Micro EDM Drilling
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
, 2A-2019,
Salt Lake City, UT
,
Nov. 11–14
.
41.
Sharma
,
D.
,
Mohanty
,
S.
, and
Das
,
A. K.
,
2020
, “
Surface Modification of Titanium Alloy Using HBN Powder Mixed Dielectric Through Micro-Electric Discharge Machining
,”
Surf. Coat. Technol.
,
381
, p.
125157
.
42.
Gomes
,
C. C.
,
Moreira
,
L. M.
,
Santos
,
V. J. S. V.
,
Ramos
,
A. S.
,
Lyon
,
J. P.
,
Soares
,
C. P.
, and
Santos
,
F. V.
,
2011
, “
Assessment of the Genetic Risks of a Metallic Alloy Used in Medical Implants
,”
Genet. Mol. Biol.
,
34
(
1
), pp.
116
121
.
43.
Armillotta
,
A.
,
2021
, “
On the Role of Complexity in Machining Time Estimation
,”
J. Intell. Manuf.
44.
Sagar
,
P.
,
Gupta
,
P.
, and
Kashyap
,
I.
,
2021
, “
A Forecasting Method with Efficient Selection of Variables in Multivariate Data Sets
,”
Int. J. Inf. Technol.
45.
Bhaumik
,
M.
, and
Maity
,
K.
,
2018
, “
Effect of Different Tool Materials During EDM Performance of Titanium Grade 6 Alloy
,”
Eng. Sci. Technol. Int. J.
,
21
(
3
), pp.
507
516
.
46.
Davis
,
R.
,
Singh
,
A.
,
Debnath
,
K.
,
Jackson
,
M. J.
,
Soares
,
P.
,
Amorim
,
F. L.
, and
Dutta
,
H.
,
2021
, “
Effect of Powder Particle Concentration and Tool Electrode Material Amid Zinc Powder-Mixed ΜEDM of Biocompatible Mg Alloy AZ91D
,”
J. Mater. Eng. Perform.
47.
Mohanty
,
S.
,
Das
,
A. K.
, and
Dixit
,
A. R.
,
2021
, “
Influence of Tool Materials on Surface Modification Using ΜEDC Process
,”
Surf. Eng.
,
37
(
9
), pp.
1084
1097
.
48.
Praveen
,
L.
,
Geeta Krishna
,
P.
,
Venugopal
,
L.
, and
Prasad
,
N. E. C.
,
2018
, “
Effects of Pulse on and off Time and Electrode Types on the Material Removal Rate and Tool Wear Rate of the Ti-6Al-4V Alloy Using EDM Machining With Reverse Polarity
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
330
(
1
), pp.
1
8
.
49.
Bhaumik
,
M.
, and
Maity
,
K.
,
2019
, “
Effect of Electrode Materials on Different EDM Aspects of Titanium Alloy
,”
Silicon
,
11
(
1
), pp.
187
196
.
50.
Kaseem
,
M.
, and
Choe
,
H. C.
,
2021
, “
Simultaneous Improvement of Corrosion Resistance and Bioactivity of a Titanium Alloy via Wet and Dry Plasma Treatments
,”
J. Alloys Compd.
,
851
, p.
156840
.
51.
Damiati
,
L.
,
Eales
,
M. G.
,
Nobbs
,
A. H.
,
Su
,
B.
,
Tsimbouri
,
P. M.
,
Salmeron-Sanchez
,
M.
, and
Dalby
,
M. J.
,
2018
, “
Impact of Surface Topography and Coating on Osteogenesis and Bacterial Attachment on Titanium Implants
,”
J. Tissue Eng.
,
9
.
52.
Ellingsen
,
J. E.
,
Thomsen
,
P.
, and
Lyngstadaas
,
S. P.
,
2006
, “
Advances in Dental Implant Materials and Tissue Regeneration
,”
Periodontol. 2000
,
41
(
1
), pp.
136
156
.
53.
Ramin
,
B. B. S.
,
Rufato
,
K. B.
,
Sabino
,
R. M.
,
Popat
,
K. C.
,
Kipper
,
M. J.
,
Martins
,
A. F.
, and
Muniz
,
E. C.
,
2019
, “
Chitosan/Iota-Carrageenan/Curcumin-Based Materials Performed by Precipitating Miscible Solutions Prepared in Ionic Liquid
,”
J. Mol. Liq.
,
290
.
54.
Manivasagam
,
V. K.
, and
Popat
,
K. C.
,
2020
, “
In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces
,”
ACS Omega
,
5
(
14
), pp.
8108
8120
.
55.
Sabino
,
R. M.
,
Mondini
,
G.
,
Kipper
,
M. J.
,
Martins
,
A. F.
, and
Popat
,
K. C.
,
2021
, “
Tanfloc/Heparin Polyelectrolyte Multilayers Improve Osteogenic Differentiation of Adipose-Derived Stem Cells on Titania Nanotube Surfaces
,”
Carbohydr. Polym.
,
251
, p.
117079
.
56.
Al-Amin
,
M.
,
Abdul Rani
,
A. M.
,
Abdu Aliyu
,
A. A.
,
Abdul Razak
,
M. A.
,
Hastuty
,
S.
, and
Bryant
,
M. G.
,
2020
, “
Powder Mixed-EDM for Potential Biomedical Applications: A Critical Review
,”
Mater. Manuf. Processes
,
35
(
16
), pp.
1789
1811
.
57.
Prihandana
,
G. S.
,
Mahardika
,
M.
,
Hamdi
,
M.
,
Wong
,
Y. S.
,
Miki
,
N.
, and
Mitsui
,
K.
,
2013
, “
Study of Workpiece Vibration in Powder-Suspended Dielectric Fluid in Micro-EDM Processes
,”
Int. J. Precis. Eng. Manuf.
,
14
(
10
), pp.
1817
1822
.
58.
Singh
,
R.
,
Singh
,
R. P.
, and
Trehan
,
R.
,
2021
, “
State of the Art in Processing of Shape Memory Alloys With Electrical Discharge Machining: A Review
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
235
(
3
), pp.
333
366
.
59.
Mower
,
T. M.
,
2014
, “
Degradation of Titanium 6Al-4V Fatigue Strength Due to Electrical Discharge Machining
,”
Int. J. Fatigue
,
64
, pp.
84
96
.
60.
Peng
,
P. W.
,
Ou
,
K. L.
,
Lin
,
H. C.
,
Pan
,
Y. N.
, and
Wang
,
C. H.
,
2010
, “
Effect of Electrical-Discharging on Formation of Nanoporous Biocompatible Layer on Titanium
,”
J. Alloys Compd.
,
492
(
1–2
), pp.
625
630
.
61.
Liu
,
J.
,
Liu
,
J.
,
Attarilar
,
S.
,
Wang
,
C.
,
Tamaddon
,
M.
,
Yang
,
C.
,
Xie
,
K.
,
Yao
,
J.
,
Wang
,
L.
,
Liu
,
C.
, and
Tang
,
Y.
,
2020
, “
Nano-Modified Titanium Implant Materials: A Way Toward Improved Antibacterial Properties
,”
Front. Bioeng. Biotechnol.
,
8
.
62.
Gittens
,
R. A.
,
McLachlan
,
T.
,
Olivares-Navarrete
,
R.
,
Cai
,
Y.
,
Berner
,
S.
,
Tannenbaum
,
R.
,
Schwartz
,
Z.
,
Sandhage
,
K. H.
, and
Boyan
,
B. D.
,
2011
, “
The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation
,”
Biomaterials
,
32
(
13
), pp.
3395
3403
.
63.
Leichtweiss
,
T.
,
Henning
,
R. A.
,
Koettgen
,
J.
,
Schmidt
,
R. M.
,
Holländer
,
B.
,
Martin
,
M.
,
Wuttig
,
M.
, and
Janek
,
J.
,
2014
, “
Amorphous and Highly Nonstoichiometric Titania (TiOx) Thin Films Close to Metal-Like Conductivity
,”
J. Mater. Chem. A
,
2
(
18
), pp.
6631
6640
.
64.
Trino
,
L. D.
,
Dias
,
L. F. G.
,
Albano
,
L. G. S.
,
Bronze-Uhle
,
E. S.
,
Rangel
,
E. C.
,
Graeff
,
C. F. O.
, and
Lisboa-Filho
,
P. N.
,
2018
, “
Zinc Oxide Surface Functionalization and Related Effects on Corrosion Resistance of Titanium Implants
,”
Ceram. Int.
,
44
(
4
), pp.
4000
4008
.
65.
Tan
,
L.
,
Liu
,
X.
, and
Wu
,
S.
,
2020
, “
Construction of Bio-Functionalized ZnO Coatings on Titanium Implants With Both Self-Antibacterial and Osteoinductive Properties
,”
Racing for the Surface
.
66.
Namavar
,
F.
,
Sabirianov
,
R. F.
,
Marton
,
D.
,
Rubinstein
,
A.
, and
Garvin
,
K. L.
,
2005
, “
Why Is Titanium Biocompatible?
,”
Phys Chem Chem Phys.
,
11
(
2
), pp.
6597
6609
.
67.
Miralami
,
R.
,
Koepsell
,
L.
,
Premaraj
,
T.
,
Kim
,
B.
,
Thiele
,
G. M.
,
Sharp
,
J. G.
,
Garvin
,
K. L.
, and
Namavar
,
F.
,
2013
, “
Comparing Biocompatibility of Nanocrystalline Titanium and Titanium-Oxide With Microcrystalline Titanium
,”
Mater. Res. Soc. Symp. Proc.
,
1569
, pp.
91
96
.
68.
Stewart
,
C.
,
Akhavan
,
B.
,
Wise
,
S. G.
, and
Bilek
,
M. M. M.
,
2019
, “
A Review of Biomimetic Surface Functionalization for Bone-Integrating Orthopedic Implants: Mechanisms, Current Approaches, and Future Directions
,”
Prog. Mater. Sci.
,
106
, p.
100588
.
69.
Parisi
,
L.
,
Ghezzi
,
B.
,
Bianchi
,
M. G.
,
Toffoli
,
A.
,
Rossi
,
F.
,
Bussolati
,
O.
, and
Macaluso
,
G. M.
,
2020
, “
Titanium Dental Implants Hydrophilicity Promotes Preferential Serum Fibronectin Over Albumin Competitive Adsorption Modulating Early Cell Response
,”
Mater. Sci. Eng. C
,
117
, p.
111307
.
70.
Bhosle
,
S. M.
, and
Friedrich
,
C. R.
,
2017
, “
Wetting Behavior and Chemistry of Titanium Nanotubular Orthopedic Surfaces: Effect of Aging and Thermal Annealing
,”
J. Bio. Tribo.Corros.
,
3
(
2
), p.
26
.
71.
Menzies
,
K. L.
, and
Jones
,
L.
,
2010
, “
The Impact of Contact Angle on the Biocompatibility of Biomaterials
,”
Optom. Vis. Sci.
,
87
(
6
), pp.
387
399
.
72.
Rufato
,
K. B.
,
Souza
,
P. R.
,
de Oliveira
,
A. C.
,
Berton
,
S. B. R.
,
Sabino
,
R. M.
,
Muniz
,
E. C.
,
Popat
,
K. C.
,
Radovanovic
,
E.
,
Kipper
,
M. J.
, and
Martins
,
A. F.
,
2021
, “
Antimicrobial and Cytocompatible Chitosan, N,N,N-Trimethyl Chitosan, and Tanfloc-Based Polyelectrolyte Multilayers on Gellan Gum Films
,”
Int. J. Biol. Macromol.
,
183
, pp.
727
742
.
73.
Stepanovska
,
J.
,
Matejka
,
R.
,
Otahal
,
M.
,
Rosina
,
J.
, and
Bacakova
,
L.
,
2020
, “
The Effect of Various Surface Treatments of Ti6Al4V on the Growth and Osteogenic Differentiation of Adipose Tissue-Derived Stem Cells
,”
Coatings
,
10
(
8
), p.
762
.
74.
Sabino
,
R. M.
,
Rau
,
J. V.
,
De Bonis
,
A.
,
De Stefanis
,
A.
,
Curcio
,
M.
,
Teghil
,
R.
, and
Popat
,
K. C.
,
2021
, “
Manganese-Containing Bioactive Glass Enhances Osteogenic Activity of TiO2 Nanotube Arrays
,”
Appl. Surf. Sci.
,
570
, p.
151163
.
75.
Attia
,
G. H.
,
Moemen
,
Y. S.
,
Youns
,
M.
,
Ibrahim
,
A. M.
,
Abdou
,
R.
, and
El Raey
,
M. A.
,
2021
, “
Antiviral Zinc Oxide Nanoparticles Mediated by Hesperidin and In Silico Comparison Study Between Antiviral Phenolics as Anti-SARS-CoV-2
,”
Colloids Surf., B
,
203
, p.
111724
.
76.
Hamdi
,
M.
,
Abdel-Bar
,
H. M.
,
Elmowafy
,
E.
,
El-Khouly
,
A.
,
Mansour
,
M.
, and
Awad
,
G. A. S.
,
2021
, “
Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide
,”
ACS Omega
,
6
(
10
), pp.
6848
6860
.
77.
El-Megharbel
,
S. M.
,
Alsawat
,
M.
,
Al-Salmi
,
F. A.
, and
Hamza
,
R. Z.
,
2021
, “
Utilizing of (Zinc Oxide Nano-Spray) for Disinfection Against ‘SARS-CoV-2’ and Testing Its Biological Effectiveness on Some Biochemical Parameters During (COVID-19 Pandemic)—ZnO Nanoparticles Have Antiviral Activity Against (SARS-CoV-2)
,”
Coatings
,
11
(
4
), p.
388
.
You do not currently have access to this content.