Abstract

Industrial measurements of the diameter profiles of work-rolls used in cold sheet rolling are applied with a stochastic roll-stack model to better understand how residual error from the roll grinding process affects the rolled sheet flatness quality. Roll diameter measurements taken via a noncontact, optical device on new, warm, and worn work-rolls show that the diameter deviations vary along the roll lengths, across roll samples, and at different operational states, suggesting a multidimensional random field problem. Studies are conducted for a 4-high rolling mill with 301 stainless steel sheet to investigate the reliability in achieving target flatness considering the work-roll diameter random field. Also investigated is the sensitivity of the flatness reliability to roll diameter deviations at different locations along the roll lengths and for the three operational states (newly machined, warm, and worn following several passes). The results lead to several key findings. Foremost, it is shown that an assumption of statistical independence among the residual grinding errors at different roll axis locations is improper. Furthermore, it is demonstrated that, for the measured grinding error correlation patterns, the roll diameter deviations external to the roll/sheet contact region play an important role in contributing to flatness defects within the sheet and that these influences vary according to the roll operational state (new, warm, worn). The presented stochastic model and applied measurement data thus provide for a new understanding into how roll grinding performance influences dimensional quality in the sheet rolling process.

References

1.
Malik
,
A. S.
, and
Grandhi
,
R. V.
,
2008
, “
A Computational Method to Predict Strip Profile in Rolling Mills
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
263
274
.
2.
Zhang
,
F.
,
Malik
,
A. S.
, and
Yu
,
H.
,
2018
, “
High-Fidelity Roll Profile Contact Modeling by Simplified Mixed Finite Element Method
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference. Volume 4: Processes
,
College Station, TX
,
June 18–22
, ASME, p. V004T03A034.
3.
Ahmed
,
R.
, and
Sutcliffe
,
M.
,
2001
, “
An Experimental Investigation of Surface Pit Evolution During Cold-Rolling or Drawing of Stainless Steel Strip
,”
ASME J. Tribol.
,
123
(
1
), pp.
1
7
.
4.
Sutcliffe
,
M. P.
,
2002
, “Surface Finish and Friction in Cold Metal Rolling,”
Metal Forming Science and Practice
,
J. G.
Lenard
, ed.,
Elsevier
,
UK
.
5.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
27
47
.
6.
Zhang
,
F.
, and
Malik
,
A. S.
,
2021
, “
An Efficient Multi-Scale Modeling Method That Reveals Coupled Effects Between Surface Roughness and Roll-Stack Deformation in Cold Sheet Rolling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101005
.
7.
Linghu
,
K.
,
Jiang
,
Z.
,
Zhao
,
J.
,
Li
,
F.
,
Wei
,
D.
,
Xu
,
J.
,
Zhang
,
X.
, and
Zhao
,
X.
,
2014
, “
3D FEM Analysis of Strip Shape During Multi-Pass Rolling in a 6-High CVC Cold Rolling Mill
,”
Int. J. Adv. Manuf. Technol.
,
74
(
9–12
), pp.
1733
1745
.
8.
Hou
,
Z. B.
, and
Komanduri
,
R.
,
2003
, “
On the Mechanics of the Grinding Process—Part I. Stochastic Nature of the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
43
(
15
), pp.
1579
1593
.
9.
Peklenik
,
J.
,
1964
, “
Contribution to the Theory of Surface Characterization
,”
CIRP Ann.
,
12
, pp.
173
178
.
10.
Peklenik
,
J.
,
1967
, “
Investigation of the Surface Typology
,”
CIRP Ann.
,
15
, p.
381
.
11.
Nguyen
,
T.
, and
Butler
,
D.
,
2005
, “
Simulation of Precision Grinding Process, Part 1: Generation of the Grinding Wheel Surface
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1321
1328
.
12.
Cao
,
Y.
,
Guan
,
J.
,
Li
,
B.
,
Chen
,
X.
,
Yang
,
J.
, and
Gan
,
C.
,
2013
, “
Modeling and Simulation of Grinding Surface Topography Considering Wheel Vibration
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5–8
), pp.
937
945
.
13.
Downey
,
G.
,
1996
, “
Differential Roll Cooling to Control Strip Flatness and Shape
,”
Steel Times
,
224
(
6
), p.
226
.
14.
Lenard
,
J. G.
,
2014
,
Primer on Flat Rolling
, 2nd ed.,
Elsevier
,
Amsterdam
.
15.
Ginzburg
,
V. B.
,
1993
,
High-Quality Steel Rolling: Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
16.
Zhang
,
F.
, and
Malik
,
A.
,
2018
, “
A Roll-Stack Contact Mechanics Model to Predict Strip Profile in Rolling Mills With Asymmetric, Continuously Variable Crown Rolls
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011008
.
17.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Reliability Assessment Using Stochastic Finite Element Analysis
,
John Wiley & Sons
,
New York
.
18.
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
, and
Singhal
,
S.
,
2004
,
Engineering Design Reliability Handbook
,
CRC Press
,
Boca Raton, FL
.
19.
Malik
,
A. S.
, and
Hinton
,
J. L.
,
2012
, “
Displacement of Multiple, Coupled Timoshenko Beams in Discontinuous Nonlinear Elastic Contact, With Application to Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051009
.
20.
Guo
,
R.-M.
,
1997
, “
Prediction of Strip Profile in Rolling Process Using Influence Coefficients and Boussinesq’s Equations
,”
ASME J. Manuf. Sci. Eng.
,
119
(
2
), pp.
220
226
.
21.
Vanmarcke
,
E.
, and
Grigoriu
,
M.
,
1983
, “
Stochastic Finite Element Analysis of Simple Beams
,”
J. Eng. Mech.
,
109
(
5
), pp.
1203
1214
.
22.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.
23.
Segerlind
,
L. J.
,
1987
,
Applied Finite Element Analysis
, 2nd ed.,
John Wiley & Sons
,
New York
.
24.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. div.
,
100
(
1
), pp.
111
121
.
25.
Rackwitz
,
R.
, and
Fiessler
,
B.
,
1976
,
Note on Discrete Safety Checking When Using Non-Normal Stochastic Models for Basic Variables. Loads Project Working Session
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
26.
Chen
,
X.
, and
Lind
,
N.
,
1982
, “
Fast Probability Integration by Three-Parameter Normal Tail Approximation
,”
Struct. Saf.
,
1
(
4
), pp.
269
276
.
27.
Wu
,
Y.-T.
, and
Wirsching
,
P. H.
,
1987
, “
New Algorithm for Structural Reliability Estimation
,”
J. Eng. Mech.
,
113
(
9
), pp.
1319
1336
.
28.
Bazoune
,
A.
,
Khulief
,
Y. A.
, and
Stephen
,
N.G.
,
2003
, “
Shape Functions of Three-Dimensional Timoshenko Beam Element
,”
J. Sound Vib.
,
259
(
2
), pp.
473
480
.
29.
Malik
,
A. S.
,
2007
, “
Rolling Mill Optimization Using an Accurate and Rapid New Model Mill Deflection and Strip Thickness Profile
,”
Ph.D. thesis
,
Wright State University
,
Dayton, OH
.
30.
Matsubara
,
S.
,
Hara
,
K.
, and
Takezoe
,
A.
,
1989
, “
Optimization of Work Roll Taper for Extremely-Thin Strip Rolling
,”
ISIJ Int.
,
29
(
1
), pp.
58
63
.
You do not currently have access to this content.