Abstract

The process uncertainty induced quality issue remains the major challenge that hinders the wider adoption of additive manufacturing (AM) technology. The defects occurred significantly compromise structural integrity and mechanical properties of fabricated parts. Therefore, there is an urgent need in fast, yet reliable AM component certification. Most finite element analysis related methods characterize defects based on the thermomechanical relationships, which are computationally inefficient and cannot capture process uncertainty. In addition, there is a growing trend in data-driven approaches on characterizing the empirical relationships between thermal history and anomaly occurrences, which focus on modeling an individual image basis to identify local defects. Despite their effectiveness in local anomaly detection, these methods are quite cumbersome when applied to layer-wise anomaly detection. This paper proposes a novel in situ layer-wise anomaly detection method by analyzing the layer-by-layer morphological dynamics of melt pools and heat affected zones (HAZs). Specifically, the thermal images are first preprocessed based on the g-code to assure unified orientation. Subsequently, the melt pool and HAZ are segmented, and the global and morphological transition metrics are developed to characterize the morphological dynamics. New layer-wise features are extracted, and supervised machine learning methods are applied for layer-wise anomaly detection. The proposed method is validated using the directed energy deposition (DED) process, which demonstrates superior performance comparing with the benchmark methods. The average computational time is significantly shorter than the average build time, enabling in situ layer-wise certification and real-time process control.

References

1.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.
2.
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2022
, “
When AI Meets Additive Manufacturing: Challenges and Emerging Opportunities for Human-Centered Products Development
,”
J. Manuf. Syst.
3.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In-Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
4.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
.
5.
Jurrens
,
K.
,
Migler
,
K.
,
Ricker
,
R.
,
Pei
,
Z.
,
Schmid
,
S.
,
Love
,
L.
,
Resnick
,
R.
, and
Vorvolakos
,
K.
,
2013
, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” NIST, Gaithersburg, MD.
6.
Bae
,
C.-J.
,
Diggs
,
A. B.
, and
Ramachandran
,
A.
,
2018
,
Additive Manufacturing Materials: Processes, Quantifications and Applications
,
Elsevier
,
Oxford, UK
, pp.
181
213
.
7.
Chen
,
Z.
,
Han
,
C.
,
Gao
,
M.
,
Kandukuri
,
S. Y.
, and
Zhou
,
K.
,
2022
, “
A Review on Qualification and Certification for Metal Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
17
(
2
), pp.
382
405
.
8.
AIA
,
2020
, “
Report: Recommended Guidance for Certification of AM Components
,” pp.
0
39
9.
L. R. & T. Ltd
,
2020
, “
Guidance Notes for Additive Manufacturing of Metallic Parts
,” Additive Manufacturing.
10.
Romano
,
J.
,
Ladani
,
L.
, and
Sadowski
,
M.
,
2015
, “
Thermal Modeling of Laser Based Additive Manufacturing Processes Within Common Materials
,”
Procedia Manuf.
,
1
, pp.
238
250
.
11.
Tian
,
H.
,
Chen
,
X.
,
Yan
,
Z.
,
Zhi
,
X.
,
Yang
,
Q.
, and
Yuan
,
Z.
,
2019
, “
Finite-Element Simulation of Melt Pool Geometry and Dilution Ratio During Laser Cladding
,”
Appl. Phys. A Mater. Sci. Process.
,
125
(
7
), pp.
1
9
.
12.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
.
13.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
14.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
15.
Grasso
,
M.
,
Demir
,
A. G.
,
Previtali
,
B.
, and
Colosimo
,
B. M.
,
2018
, “
In Situ Monitoring of Selective Laser Melting of Zinc Powder Via Infrared Imaging of the Process Plume
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
229
239
.
16.
Esfahani
,
M. N.
,
Bappy
,
M.
,
Bian
,
L.
, and
Tian
,
W.
,
2022
, “
In-Situ Layer-Wise Certification for Direct Laser Deposition Processes Based on Thermal Image Series Analysis
,”
J. Manuf. Process
,
75
, pp.
895
902
.
17.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
29
, p.
100830
.
18.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.
19.
Naresh
,
K.
,
Khan
,
K. A.
,
Umer
,
R.
, and
Cantwell
,
W. J.
,
2020
, “
The Use of X-Ray Computed Tomography for Design and Process Modeling of Aerospace Composites: A Review
,”
Mater. Des.
,
190
, p.
108553
.
20.
Vora
,
H. D.
, and
Sanyal
,
S.
,
2020
, “
A Comprehensive Review: Metrology in Additive Manufacturing and 3D Printing Technology
,”
Prog. Addit. Manuf.
,
5
(
4
), pp.
319
353
.
21.
Haleem
,
A.
, and
Javaid
,
M.
,
2018
, “
Role of CT and MRI in the Design and Development of Orthopaedic Model Using Additive Manufacturing
,”
J. Clin. Orthop. Trauma
,
9
(
3
), pp.
213
217
.
22.
Kim
,
C.
,
Yin
,
H.
,
Shmatok
,
A.
,
Prorok
,
B. C.
,
Lou
,
X.
, and
Matlack
,
K. H.
,
2021
, “
Ultrasonic Nondestructive Evaluation of Laser Powder Bed Fusion 316L Stainless Steel
,”
Addit. Manuf.
,
38
, p.
101800
.
23.
Ye
,
Z.
,
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2021
, “
In-Situ Point Cloud Fusion for Layer-Wise Monitoring of Additive Manufacturing
,”
J. Manuf. Syst.
,
61
, pp.
210
222
.
24.
Liu
,
C.
,
Wang
,
R. R.
,
Ho
,
I.
,
Kong
,
Z. J.
,
Williams
,
C.
,
Babu
,
S.
, and
Joslin
,
C.
,
2022
, “
Toward Online Layer-Wise Surface Morphology Measurement in Additive Manufacturing Using a Deep Learning-Based Approach
,”
J. Intell. Manuf.
,
in press
, pp.
1
17
.
25.
Lifton
,
J.
, and
Liu
,
T.
,
2021
, “
An Adaptive Thresholding Algorithm for Porosity Measurement of Additively Manufactured Metal Test Samples Via X-Ray Computed Tomography
,”
Addit. Manuf.
,
39
, p.
101899
.
26.
Pokorný
,
P.
,
Václav
,
Š.
,
Petru
,
J.
, and
Kritikos
,
M.
,
2021
, “
Porosity Analysis of Additive Manufactured Parts Using CAQ Technology
,”
Materials (Basel)
,
14
(
5
), pp.
1
14
.
27.
Gobert
,
C.
,
Kudzal
,
A.
,
Sietins
,
J.
,
Mock
,
C.
,
Sun
,
J.
, and
McWilliams
,
B.
,
2020
, “
Porosity Segmentation in X-Ray Computed Tomography Scans of Metal Additively Manufactured Specimens With Machine Learning
,”
Addit. Manuf.
,
36
, p.
101460
.
28.
Soltani
,
F.
,
Goueygou
,
M.
,
Lafhaj
,
Z.
, and
Piwakowski
,
B.
,
2013
, “
Relationship Between Ultrasonic Rayleigh Wave Propagation and Capillary Porosity in Cement Paste With Variable Water Content
,”
NDT E Int.
,
54
, pp.
75
83
.
29.
Karthik
,
N. V.
,
Gu
,
H.
,
Pal
,
D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components
,”
24th International SFF Symposium—An Additive Manufacturing Conference SFF
,
University of Texas at Austin
,
Aug. 16
.
30.
Khanzadeh
,
M.
,
Dantin
,
M.
,
Tian
,
W.
,
Priddy
,
M. W.
,
Doude
,
H.
, and
Bian
,
L.
,
2022
, “
Fast Prediction of Thermal Data Stream for Direct Laser Deposition Processes Using Network-Based Tensor Regression
,”
ASME J. Manuf. Sci. Eng.
,
144
(
4
), p.
041004
.
31.
Xiyue
,
Z.
,
Aidin
,
I.
,
Mojtaba
,
K.
,
Farhad
,
I.
, and
Linkan
,
B.
,
2021
, “
Automated Anomaly Detection of Laser-Based Additive Manufacturing Using Melt Pool Sparse Representation and Unsupervised Learning
,”
2021 International Solid Freeform Fabrication Symposium
,
University of Texas at Austin
,
Aug. 2-4
.
32.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
.
33.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), pp.
1
40
.
34.
Mitchell
,
J. A.
,
Ivanoff
,
T. A.
,
Dagel
,
D.
,
Madison
,
J. D.
, and
Jared
,
B.
,
2020
, “
Linking Pyrometry to Porosity in Additively Manufactured Metals
,”
Addit. Manuf.
,
31
, p.
100946
.
35.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
A Multi-Scale Convolutional Neural Network for Autonomous Anomaly Detection and Classification in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
24
, pp.
273
286
.
36.
Tian
,
Q.
,
Guo
,
S.
, and
Guo
,
Y.
,
2020
, “
A Physics-Driven Deep Learning Model for Process-Porosity Causal Relationship and Porosity Prediction With Interpretability in Laser Metal Deposition
,”
CIRP Ann.
,
69
(
1
), pp.
205
208
.
37.
Reisch
,
R.
,
Hauser
,
T.
,
Lutz
,
B.
,
Pantano
,
M.
,
Kamps
,
T.
, and
Knoll
,
A.
,
2020
, “
Distance-Based Multivariate Anomaly Detection in Wire Arc Additive Manufacturing
,”
Proceedings—19th IEEE International Conference on Machine Learning & Applications (ICMLA 2020)
,
Miami, FL
,
Dec. 14–17
.
38.
Liu
,
C.
,
Law
,
A. C. C.
,
Roberson
,
D.
, and
Kong
,
Z. J.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
.
39.
Al Mamun
,
A.
,
Liu
,
C.
,
Kan
,
C.
, and
Tian
,
W.
,
2022
, “
Securing Cyber-Physical Additive Manufacturing Systems by In-Situ Process Authentication Using Streamline Video Analysis
,”
J. Manuf. Syst.
,
62
, pp.
429
440
.
40.
Liu
,
C.
,
Kong
,
Z.
,
Babu
,
S.
,
Joslin
,
C.
, and
Ferguson
,
J.
,
2021
, “
An Integrated Manifold Learning Approach for High-Dimensional Data Feature Extractions and Its Applications to Online Process Monitoring of Additive Manufacturing
,”
IISE Trans.
,
53
(
11
), pp.
1215
1230
.
41.
Yan
,
H.
,
Grasso
,
M.
,
Paynabar
,
K.
, and
Colosimo
,
B. M.
,
2020
, “
Real-Time Detection of Clustered Events in Video-Imaging Data With Applications to Additive Manufacturing
,”
IISE Trans.
,
54
(
5
), pp.
464
480
.
42.
Colosimo
,
B. M.
, and
Grasso
,
M.
,
2018
, “
Spatially Weighted PCA for Monitoring Video Image Data With Application to Additive Manufacturing
,”
J. Qual. Technol.
,
50
(
4
), pp.
391
417
.
43.
Chen
,
L.
,
Yao
,
X.
,
Xu
,
P.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2021
, “
Rapid Surface Defect Identification for Additive Manufacturing With In-Situ Point Cloud Processing and Machine Learning
,”
Virtual Phys. Prototyp.
,
16
(
1
), pp.
50
67
.
44.
Li
,
R.
,
Jin
,
M.
, and
Paquit
,
V. C.
,
2021
, “
Geometrical Defect Detection for Additive Manufacturing With Machine Learning Models
,”
Mater. Des.
,
206
, p.
109726
.
45.
Tootooni
,
M. S.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z. J.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
46.
Jaklič
,
A.
,
Erič
,
M.
,
Mihajlović
,
I.
,
Stopinšek
,
Ž.
, and
Solina
,
F.
,
2015
, “
Volumetric Models From 3D Point Clouds: The Case Study of Sarcophagi Cargo From a 2nd/3rd Century AD Roman Shipwreck Near Sutivan on Island Brač, Croatia
,”
J. Archaeol. Sci.
,
62
, pp.
143
152
.
47.
Yuan
,
B.
,
Giera
,
B.
,
Guss
,
G.
,
Matthews
,
M.
, and
McMains
,
S.
,
2019
, “
Semi-Supervised Convolutional Neural Networks for In-Situ Video Monitoring of Selective Laser Melting
,”
Proceedings—2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
,
Waikoloa Village, HI
,
Jan. 7–11
.
48.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
.
49.
Seifi
,
S. H.
,
Yadollahi
,
A.
,
Tian
,
W.
,
Doude
,
H.
,
Hammond
,
V. H.
, and
Bian
,
L.
,
2021
, “
In Situ Nondestructive Fatigue-Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship
,”
Adv. Intell. Syst.
,
3
(
12
), p.
2000268
.
50.
Tian
,
Q.
,
Guo
,
S.
,
Melder
,
E.
,
Bian
,
L.
, and
Guo
,
W.
,
2021
, “
Deep Learning-Based Data Fusion Method for In Situ Porosity Detection in Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041011
.
51.
Ye
,
D.
,
Hsi Fuh
,
J. Y.
,
Zhang
,
Y.
,
Hong
,
G. S.
, and
Zhu
,
K.
,
2018
, “
In Situ Monitoring of Selective Laser Melting Using Plume and Spatter Signatures by Deep Belief Networks
,”
ISA Trans.
,
81
, pp.
96
104
.
52.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
.
53.
Feng
,
W.
,
Mao
,
Z.
,
Yang
,
Y.
,
Ma
,
H.
,
Zhao
,
K.
,
Qi
,
C.
,
Hao
,
C.
,
Liu
,
Z.
,
Xie
,
H.
, and
Liu
,
S.
,
2022
, “
Online Defect Detection Method and System Based on Similarity of the Temperature Field in the Melt Pool
,”
Addit. Manuf.
,
54
, p.
102760
.
54.
Shi
,
Z.
,
Al Mamun
,
A.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2022
, “
An LSTM-Autoencoder Based Online Side Channel Monitoring Approach for Cyber-Physical Attack Detection in Additive Manufacturing
,”
J. Intell. Manuf.
,
in press
, pp.
1
17
.
55.
Shi
,
Z.
,
Mandal
,
S.
,
Harimkar
,
S.
, and
Liu
,
C.
,
2021
, “
Surface Morphology Analysis Using Convolutional Autoencoder in Additive Manufacturing With Laser Engineered Net Shaping
,”
Procedia Manuf.
,
53
, pp.
16
23
.
56.
Gaja
,
H.
, and
Liou
,
F.
,
2018
, “
Defect Classification of Laser Metal Deposition Using Logistic Regression and Artificial Neural Networks for Pattern Recognition
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
315
326
.
57.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
.
58.
García-Moreno
,
A. I.
,
Alvarado-Orozco
,
J. M.
,
Ibarra-Medina
,
J.
, and
Martínez-Franco
,
E.
,
2020
, “
Image-Based Porosity Classification in Al-Alloys by Laser Metal Deposition Using Random Forests
,”
Int. J. Adv. Manuf. Technol.
,
110
(
9–10
), pp.
2827
2845
.
59.
Lee
,
W.
,
Li
,
W.
,
Lin
,
B.
, and
Monod
,
A.
,
2021
, “
Tropical Optimal Transport and Wasserstein Distances
,”
Inf. Geom.
, pp.
1
13
.
60.
Liu
,
J.
,
Yin
,
W.
,
Li
,
W.
, and
Chow
,
Y. T.
,
2018
, “
Multilevel Optimal Transport: A Fast Approximation of Wasserstein-1 Distances
,” arXiv.
61.
Tian
,
W.
,
Jin
,
R.
,
Huang
,
T.
, and
Camelio
,
J. A.
,
2017
, “
Statistical Process Control for Multistage Processes With Non-Repeating Cyclic Profiles
,”
IISE Trans.
,
49
(
3
), pp.
320
331
.
62.
Xiang
,
L.
, and
Tsung
,
F.
,
2008
, “
Statistical Monitoring of Multi-Stage Processes Based on Engineering Models
,”
IIE Trans.
,
40
(
10
), pp.
957
970
.
63.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
,
Springer
,
New York
.
You do not currently have access to this content.