Abstract

Achieving defect-free parts is traditionally challenging in laser powder bed fusion (LPBF). The mechanical properties of additively manufactured parts are highly affected by their density; as such, research in defect detection and pore prediction has gained significant interest. The process parameters, the powder characteristics, and the process environment conditions play an important role in defect occurrence. Moreover, the laser scan path affects density, especially at scan path discontinuities. In this work, the complex interaction between the process parameters and the scan path on the occurrence of subsurface pores is investigated. In the data preparation step, a synthetic data set is generated to model the melt pool morphology along the scan path. A secondary data set containing the pore space of the resulting parts is obtained via X-ray computed tomography (CT) and is registered with the synthetic data set. Machine learning models, namely, a Conditional Variational AutoEncoder (CVAE) and a Convolutional Neural Network (CNN), are then trained based on the input features to predict pore occurrence. The performance evaluation of both CNN and CVAE models on synthetic data indicates that the scan path and process parameters can be utilized in predicting pore locations. Quantitative results show that employing offline CT images a priori in training the CVAE, without the need to have CT information in the test phase, leads the CVAE model to superior performance over the CNN.

References

1.
Berger
,
R.
Additive Manufacturing: A Game Changer for the Manufacturing Industry, Roland Berger 520 Strategy Consultants GmbH, Munich 1 (5.1)
.
2.
Merkt
,
S.
,
Hinke
,
C.
,
Schleifenbaum
,
H.
, and
Voswinckel
,
H.
,
2012
, “
Geometric Complexity Analysis in an Integrative Technology Evaluation Model (Item) for Selective Laser Melting (SLM)
,”
S. Afr. J. Ind. Eng.
,
23
(
2
), pp.
97
105
. 10.7166/23-2-333
3.
Camacho
,
D. D.
,
Clayton
,
P.
,
O’Brien
,
W. J.
,
Seepersad
,
C.
,
Juenger
,
M.
,
Ferron
,
R.
, and
Salamone
,
S.
,
2018
, “
Applications of Additive Manufacturing in the Construction Industry—A Forward-Looking Review
,”
Autom. Constr.
,
89
, pp.
110
119
. 10.1016/j.autcon.2017.12.031
4.
Tofail
,
S. A.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
. 10.1016/j.mattod.2017.07.001
5.
Morrow
,
B. M.
,
Lienert
,
T. J.
,
Knapp
,
C. M.
,
Sutton
,
J. O.
,
Brand
,
M. J.
,
Pacheco
,
R. M.
,
Livescu
,
V.
,
Carpenter
,
J. S.
, and
Gray
,
G. T.
,
2018
, “
Impact of Defects in Powder Feedstock Materials on Microstructure of 304 l and 316 l Stainless Steel Produced by Additive Manufacturing
,”
Metall. Mater. Trans. A
,
49
(
8
), pp.
3637
3650
. 10.1007/s11661-018-4661-9
6.
Romano
,
S.
,
Brückner-Foit
,
A.
,
Brandão
,
A.
,
Gumpinger
,
J.
,
Ghidini
,
T.
, and
Beretta
,
S.
,
2018
, “
Fatigue Properties of alsi10 mg Obtained by Additive Manufacturing: Defect-Based Modelling and Prediction of Fatigue Strength
,”
Eng. Fract. Mech.
,
187
, pp.
165
189
. 10.1016/j.engfracmech.2017.11.002
7.
du Plessis
,
A.
,
2019
, “
Effects of Process Parameters on Porosity in Laser Powder bed Fusion Revealed by X-ray Tomography
,”
Addit. Manuf.
, p.
100871
. 10.1016/j.addma.2019.100871
8.
Romano
,
S.
,
Brandão
,
A.
,
Gumpinger
,
J.
,
Gschweitl
,
M.
, and
Beretta
,
S.
,
2017
, “
Qualification of am Parts: Extreme Value Statistics Applied to Tomographic Measurements
,”
Mater. Des.
,
131
, pp.
32
48
. 10.1016/j.matdes.2017.05.091
9.
Kasperovich
,
G.
,
Haubrich
,
J.
,
Gussone
,
J.
, and
Requena
,
G.
,
2016
, “
Correlation Between Porosity and Processing Parameters in TiAl6V4 Produced by Selective Laser Melting
,”
Mater. Des.
,
105
, pp.
160
170
. 10.1016/j.matdes.2016.05.070
10.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
11.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: a Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
12.
Kamath
,
C.
,
El-dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2014
, “
Density of Additively-Manufactured, 316 l ss Parts Using Laser Powder-Bed Fusion at Powers up to 400 w
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
65
78
. 10.1007/s00170-014-5954-9
13.
Yusuf
,
S.
,
Chen
,
Y.
,
Boardman
,
R.
,
Yang
,
S.
, and
Gao
,
N.
,
2017
, “
Investigation on Porosity and Microhardness of 316 l Stainless Steel Fabricated by Selective Laser Melting
,”
Metals
,
7
(
2
), p.
64
. 10.3390/met7020064
14.
Abele
,
E.
,
Stoffregen
,
H. A.
,
Kniepkamp
,
M.
,
Lang
,
S.
, and
Hampe
,
M.
,
2015
, “
Selective Laser Melting for Manufacturing of Thin-Walled Porous Elements
,”
J. Mater. Process. Technol.
,
215
, pp.
114
122
. 10.1016/j.jmatprotec.2014.07.017
15.
Cunningham
,
R.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Rollett
,
A.
,
2017
, “
Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V
,”
JOM
,
69
(
3
), pp.
479
484
. 10.1007/s11837-016-2234-1
16.
Thompson
,
A.
,
Maskery
,
I.
, and
Leach
,
R. K.
,
2016
, “
X-ray Computed Tomography for Additive Manufacturing: A Review
,”
Meas. Sci. Technol.
,
27
(
7
), p.
072001
. 10.1088/0957-0233/27/7/072001
17.
Tammas-Williams
,
S.
,
Zhao
,
H.
,
Léonard
,
F.
,
Derguti
,
F.
,
Todd
,
I.
, and
Prangnell
,
P.
,
2015
, “
XCT Analysis of the Influence of Melt Strategies on Defect Population in Ti–6Al–4V Components Manufactured by Selective Electron Beam Melting
,”
Mater. Charact.
,
102
, pp.
47
61
. 10.1016/j.matchar.2015.02.008
18.
Ziółkowski
,
G.
,
Chlebus
,
E.
,
Szymczyk
,
P.
, and
Kurzac
,
J.
,
2014
, “
Application of X-ray CT Method for Discontinuity and Porosity Detection in 316 l Stainless Steel Parts Produced With SLM Technology
,”
Arch. Civ. Mech. Eng.
,
14
(
4
), pp.
608
614
. 10.1016/j.acme.2014.02.003
19.
Zhou
,
X.
,
Wang
,
D.
,
Liu
,
X.
,
Zhang
,
D.
,
Qu
,
S.
,
Ma
,
J.
,
London
,
G.
,
Shen
,
Z.
, and
Liu
,
W.
,
2015
, “
3D-Imaging of Selective Laser Melting Defects in a Co–Cr–Mo Alloy by Synchrotron Radiation Micro-CT
,”
Acta Mater.
,
98
, pp.
1
16
. 10.1016/j.actamat.2015.07.014
20.
Beal
,
V.
,
Erasenthiran
,
P.
,
Hopkinson
,
N.
,
Dickens
,
P.
, and
Ahrens
,
C. H.
,
2008
, “
Scanning Strategies and Spacing Effect on Laser Fusion of h13 Tool Steel Powder Using High Power Nd: Yag Pulsed Laser
,”
Int. J. Prod. Res.
,
46
(
1
), pp.
217
232
. 10.1080/00207540500168279
21.
Larrosa
,
N.
,
Wang
,
W.
,
Read
,
N.
,
Loretto
,
M.
,
Evans
,
C.
,
Carr
,
J.
,
Tradowsky
,
U.
,
Attallah
,
M.
, and
Withers
,
P.
,
2018
, “
Linking Microstructure and Processing Defects to Mechanical Properties of Selectively Laser Melted ALSI10 mg Alloy
,”
Theor. Appl. Fract. Mec.
,
98
, pp.
123
133
. 10.1016/j.tafmec.2018.09.011
22.
Ertay
,
D. S.
,
Ma
,
H.
, and
Vlasea
,
M.
,
2018
, “
Correlative Beam Path and Pore Defect Space Analysis for Modulated Powder Bed Laser Fusion Process
,”
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
274
284
.
23.
Martin
,
A. A.
,
Calta
,
N. P.
,
Khairallah
,
S. A.
,
Wang
,
J.
,
Depond
,
P. J.
,
Fong
,
A. Y.
,
Thampy
,
V.
,
Guss
,
G. M.
,
Kiss
,
A. M.
,
Stone
,
K. H.
, and
Tassone
,
C. J.
,
2019
, “
Dynamics of Pore Formation During Laser Powder Bed Fusion Additive Manufacturing
,”
Nat. Commun.
,
10
(
1
), p.
1987
. 10.1038/s41467-019-10009-2
24.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-situ Process Monitoring and In-situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
. 10.1016/j.matdes.2016.01.099
25.
Leach
,
R.
,
Bourell
,
D.
,
Carmignato
,
S.
,
Donmez
,
A.
,
Senin
,
N.
, and
Dewulf
,
W.
,
2019
, “
Geometrical Metrology for Metal Additive Manufacturing
,”
CIRP Ann.
,
68
(
2
), pp.
677
700
. 10.1016/j.cirp.2019.05.004
26.
Gong
,
H.
,
Nadimpalli
,
V. K.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2019
, “
Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing
,”
Technologies
,
7
(
2
), p.
44
. 10.3390/technologies7020044
27.
Lu
,
Q. Y.
, and
Wong
,
C. H.
,
2018
, “
Additive Manufacturing Process Monitoring and Control by Non-destructive Testing Techniques: Challenges and In-Process Monitoring
,”
Virtual Phys. Prototyp.
,
13
(
2
), pp.
39
48
. 10.1080/17452759.2017.1351201
28.
Lopez
,
A.
,
Bacelar
,
R.
,
Pires
,
I.
,
Santos
,
T. G.
,
Sousa
,
J. P.
, and
Quintino
,
L.
,
2018
, “
Non-destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
298
306
. 10.1016/j.addma.2018.03.020
29.
Lopez
,
A. B.
,
Santos
,
J.
,
Sousa
,
J. P.
,
Santos
,
T. G.
, and
Quintino
,
L.
,
2019
, “
Phased Array Ultrasonic Inspection of Metal Additive Manufacturing Parts
,”
J. Nondestruct. Eval.
,
38
(
3
), p.
62
. 10.1007/s10921-019-0600-y
30.
Hirvimäki
,
M.
,
Manninen
,
M.
,
Lehti
,
A.
,
Happonen
,
A.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2013
,
Evaluation of Different Monitoring Methods of Laser Additive Manufacturing of Stainless Steel
, Vol.
651
,
Trans Tech Publications Ltd
.,
Switzerland
, pp.
812
819
.
31.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
. 10.1016/j.addma.2018.08.014
32.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
. 10.1115/1.4042108
33.
Ahuett-Garza
,
H.
, and
Kurfess
,
T.
,
2018
, “
A Brief Discussion on the Trends of Habilitating Technologies for Industry 4.0 and Smart Manufacturing
,”
Manuf. Lett.
,
15
, pp.
60
63
. 10.1016/j.mfglet.2018.02.011
34.
Razaviarab
,
N.
,
Sharifi
,
S.
, and
Banadaki
,
Y. M.
,
2019
,
Nano-, Bio-, Info-Tech Sensors and 3D Systems III
, Vol.
10969
,
International Society for Optics and Photonics
,
Denver, CO
, p.
109690H
.
35.
Kwon
,
O.
,
Kim
,
H. G.
,
Ham
,
M. J.
,
Kim
,
W.
,
Kim
,
G.-H.
,
Cho
,
J.-H.
,
Kim
,
N. I.
, and
Kim
,
K.
,
2018
, “
A Deep Neural Network for Classification of Melt-Pool Images in Metal Additive Manufacturing
,”
J. Intell. Manuf.
,
31
(
2
), pp.
1
12
. 10.1007/s10845-018-1451-6
36.
Shevchik
,
S. A.
,
Masinelli
,
G. G.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2019
, “
Deep Learning for in Situ and Real-Time Quality Monitoring in Additive Manufacturing Using Acoustic Emission
,”
IEEE Trans. Industr. Inform.
,
15
(
9
), pp.
5194
5203
. 10.1109/tii.2019.2910524
37.
Tan
,
Y.
,
Jin
,
B.
,
Nettekoven
,
A.
,
Chen
,
Y.
,
Yue
,
Y.
,
Topcu
,
U.
, and
Sangiovanni-Vincentelli
,
A.
,
2019
, “
An Encoder-Decoder Based Approach for Anomaly Detection With Application in Additive Manufacturing
,”
Proceedings of 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
,
Boca Raton, FL
,
Dec. 16–19
, IEEE, pp.
1008
1015
.
38.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E. P.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
. 10.1115/1.4044420
39.
Özel
,
T.
,
Altay
,
A.
,
Kaftanoğlu
,
B.
,
Leach
,
R.
,
Senin
,
N.
, and
Donmez
,
A.
,
2020
, “
Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011008
. 10.1115/1.4045415
40.
Caggiano
,
A.
,
Zhang
,
J.
,
Alfieri
,
V.
,
Caiazzo
,
F.
,
Gao
,
R.
, and
Teti
,
R.
,
2019
, “
Machine Learning-Based Image Processing for On-line Defect Recognition in Additive Manufacturing
,”
CIRP Ann.
,
68
(
1
), pp.
451
454
. 10.1016/j.cirp.2019.03.021
41.
Gobert
,
C.
,
Reutzel
,
E. W.
,
Petrich
,
J.
,
Nassar
,
A. R.
, and
Phoha
,
S.
,
2018
, “
Application of Supervised Machine Learning for Defect Detection During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging
,”
Addit. Manuf.
,
21
, pp.
517
528
. 10.1016/j.addma.2018.04.005
42.
Baumgartl
,
H.
,
Tomas
,
J.
,
Buettner
,
R.
, and
Merkel
,
M.
,
2019
, “
A Novel Deep-Learning Approach for Automated Non-Destructive Testing in Quality Assurance Based on Convolutional Neural Networks
,”
ACEX-2019 Proceedings
,
Athens, Greece
,
July 1–5
.
43.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify In-situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
. 10.1016/j.addma.2018.11.010
44.
Ahmadi
,
E.
,
Azimifar
,
Z.
,
Fieguth
,
P.
, and
Ayatollahi
,
S.
,
2014
, “
Discriminative Graphical Model for Porous Media Image Synthesis, Iranian Journal of Science and Technology
,”
Trans. Electr. Eng.
,
38
(
E2
), p.
177
.
45.
Tang
,
S.
,
Wang
,
G.
,
Zhang
,
H.
, and
Wang
,
R.
,
2017
, “
An Online Surface Defects Detection System for Awam Based on Deep Learning, in: Solid Freeform Fabrication 2017
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 7–9
, Vol.
81
, pp.
1965
1981
.
46.
Minnema
,
J.
,
van Eijnatten
,
M.
,
Kouw
,
W.
,
Diblen
,
F.
,
Mendrik
,
A.
, and
Wolff
,
J.
,
2018
, “
Ct Image Segmentation of Bone for Medical Additive Manufacturing Using a Convolutional Neural Network
,”
Comput. Biol. Med.
,
103
, pp.
130
139
. 10.1016/j.compbiomed.2018.10.012
47.
Ye
,
D.
,
Hong
,
G. S.
,
Zhang
,
Y.
,
Zhu
,
K.
, and
Fuh
,
J. Y. H.
,
2018
, “
Defect Detection in Selective Laser Melting Technology by Acoustic Signals With Deep Belief Networks
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2791
2801
. 10.1007/s00170-018-1728-0
48.
Shevchik
,
S. A.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2018
, “
Acoustic Emission for In situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks
,”
Addit. Manuf.
,
21
, pp.
598
604
. 10.1016/j.addma.2017.11.012
49.
Francis
,
J.
, and
Bian
,
L.
,
2019
, “
Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing Using Big Data
,”
Manuf. Lett.
,
20
, pp.
10
14
. 10.1016/j.mfglet.2019.02.001
50.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
. 10.1016/j.addma.2017.11.009
51.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
. 10.1016/j.jmsy.2018.04.001
52.
Wasmer
,
K.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Shevchik
,
S.
,
2017
, “
In situ and Real-Time Monitoring of Powder-Bed AM by Combining Acoustic Emission and Artificial Intelligence
,”
International Conference on Additive Manufacturing in Products and Applications
,
Zurich, Switzerland
,
Sept. 13–15
, Springer, pp.
200
209
.
53.
Yuan
,
B.
,
Guss
,
G. M.
,
Wilson
,
A. C.
,
Hau-Riege
,
S. P.
,
DePond
,
P. J.
,
McMains
,
S.
,
Matthews
,
M. J.
, and
Giera
,
B.
,
2018
, “
Machine-Learning-Based Monitoring of Laser Powder Bed Fusion
,”
Adv. Mater. Technol.
,
3
(
12
), p.
1800136
. 10.1002/admt.201800136
54.
Paul
,
A.
,
Mozaffar
,
M.
,
Yang
,
Z.
,
Liao
,
W.-K.
,
Choudhary
,
A.
,
Cao
,
J.
, and
Agrawal
,
A.
,
2019
, “
A Real-Time Iterative Machine Learning Approach for Temperature Profile Prediction in Additive Manufacturing Processes
,”
Proceedings of 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
,
IEEE
, pp.
541
550
.
55.
Donegan
,
S. P.
,
Schwalbach
,
E. J.
, and
Groeber
,
M. A.
,
2020
, “
Zoning Additive Manufacturing Process Histories Using Unsupervised Machine Learning
,”
Mater. Charact.
, pp.
110
123
. 10.1016/j.matchar.2020.110123
56.
Schwalbach
,
E. J.
,
Donegan
,
S. P.
,
Chapman
,
M. G.
,
Chaput
,
K. J.
, and
Groeber
,
M. A.
,
2019
, “
A Discrete Source Model of Powder Bed Fusion Additive Manufacturing Thermal History
,”
Addit. Manuf.
,
25
, pp.
485
498
. 10.1016/j.addma.2018.12.004
57.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends Mach. Learn.
,
12
(
4
), pp.
307
392
. 10.1561/2200000056
58.
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Wierstra
,
D.
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
,”
arXiv preprint arXiv:1401.4082
.
59.
Doersch
,
C.
Tutorial on Variational Autoencoders
,”
arXiv preprint arXiv:1606.05908
.
60.
Alsi10mg-0403 Powder for Additive Manufacturing
,” https://www.renishaw.com/en/data-sheets-additive-manufacturing–17862, Accessed August 30, 2019.
61.
Rubenchik
,
A. M.
,
King
,
W. E.
, and
Wu
,
S. S.
,
2018
, “
Scaling Laws for the Additive Manufacturing
,”
J. Mater. Process. Technol.
,
257
, pp.
234
243
. 10.1016/j.jmatprotec.2018.02.034
62.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
63.
Brock
,
L.
,
2020
, “
Laser Powder Bed Fusion of ALSI10 mg for Fabrication of Fluid Power Components
,”
Master’s thesis
,
University of Waterloo, ON
.
64.
Gladush
,
G. G.
, and
Smurov
,
I.
,
2011
,
Physics of Laser Materials Processing: Theory and Experiment
, Vol.
146
,
Springer Science & Business Media
,
Berlin, Germany
.
65.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 8–10
, pp.
3431
3440
.
66.
Farabet
,
C.
,
Couprie
,
C.
,
Najman
,
L.
, and
LeCun
,
Y.
,
2012
, “
Learning Hierarchical Features for Scene Labeling
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1915
1929
. 10.1109/TPAMI.2012.231
67.
Tao
,
X.
,
Gao
,
H.
,
Shen
,
X.
,
Wang
,
J.
, and
Jia
,
J.
,
2018
, “
Scale-Recurrent Network for Deep Image Deblurring
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
8174
8182
.
68.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
ICML
,
Haifa, Israel
,
June 21–24
.
69.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge
.
70.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
. 10.1109/TSMC.1979.4310076
71.
Tang
,
M.
, and
Pistorius
,
P. C.
,
2017
, “
Oxides, Porosity and Fatigue Performance of alsi10 mg Parts Produced by Selective Laser Melting
,”
Int. J. Fatigue
,
94
, pp.
192
201
. 10.1016/j.ijfatigue.2016.06.002
72.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in alsi10 mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
. 10.1016/j.addma.2014.08.001
73.
Patel
,
S.
, and
Vlasea
,
M.
,
2020
, “
Melting Modes in Laser Powder Bed Fusion
,”
Materialia
,
9
, p.
100591
. 10.1016/j.mtla.2020.100591
74.
Leung
,
C. L. A.
,
Marussi
,
S.
,
Atwood
,
R. C.
,
Towrie
,
M.
,
Withers
,
P. J.
, and
Lee
,
P. D.
,
2018
, “
In situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing
,”
Nat. Commun.
,
9
(
1
), p.
1355
. 10.1038/s41467-018-03734-7
You do not currently have access to this content.