Abstract

A critical task in multi-pass process planning for the five-axis machining of complicated parts is to determine the intermediate surfaces for rough machining. Traditionally, the intermediate surfaces are simply parallel Z-level planes, and the machining is of the simplest three-axis type. However, for complicated parts, this so-called Z-level method lacks flexibility and causes isolated islands on layers, which require extraneous air movements by the tool. Moreover, the in-process workpiece machined according to the Z-level method suffers from the staircase effect, which often induces unstable dynamic problems on the tool-spindle system. In this paper, we propose a new method of planning a five-axis machining process for a complicated freeform solid part. In our method, the intermediate surfaces are no longer planar but curved, and they are intrinsically influenced by the convex hull of the part. The powerful algebraic tool of geodesic distance field is utilized to generate the desired intermediate surfaces, for which collision-free five-axis machining tool paths are then planned. In addition, we propose a novel idea of alternating between the roughing and finishing machining operations, which helps improve the stiffness of the in-process workpiece. Ample physical cutting experiments are performed, and the experimental results convincingly confirm the advantages of our method.

References

1.
Tang
,
T. D.
,
2014
, “
Algorithms for Collision Detection and Avoidance for Five-Axis NC Machining: A State of the art Review
,”
Comput.-Aided Des.
,
51
, pp.
1
17
. 10.1016/j.cad.2014.02.001
2.
Zhu
,
J.
,
Tanaka
,
T.
, and
Saito
,
Y.
,
2007
, “
A Rough Cutting Model Generation Algorithm Based on Multi-Resolution Mesh for Sculptured Surface Machining
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
5
), pp.
628
639
. 10.1299/jamdsm.1.628
3.
Inui
,
M.
,
2003
, “
Fast Inverse Offset Computation Using Polygon Rendering Hardware
,”
Comput.-Aided Des.
,
35
(
2
), pp.
191
201
. 10.1016/S0010-4485(02)00052-0
4.
Tang
,
K.
,
Cheng
,
C. C.
, and
Dayan
,
Y.
,
1995
, “
Offsetting Surface Boundaries and 3-Axis Gouge-Free Surface Machining
,”
Comput.-Aided Des.
,
27
(
12
), pp.
915
927
. 10.1016/0010-4485(96)83775-4
5.
Takeuchi
,
Y.
,
Sakamoto
,
M.
,
Abe
,
Y.
,
Orita
,
R.
, and
Sata
,
T.
,
1989
, “
Development of a Personal CAD/CAM System for Mold Manufacture Based on Solid Modeling Techniques
,”
CIRP Ann.
,
38
(
1
), pp.
429
432
. 10.1016/S0007-8506(07)62739-5
6.
Chen
,
L.
,
Hu
,
P.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Optimal Interface Surface Determination for Multi-Axis Freeform Surface Machining with Both Roughing and Finishing
,”
Chin. J. Aeronaut.
,
31
(
2
), pp.
370
384
. 10.1016/j.cja.2017.07.004
7.
Chen
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2017
, “
Variable-depth Multi-Pass Tool Path Generation on Mesh Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2169
2183
.
8.
Lefebvre
,
P. P.
, and
Lauwers
,
B.
,
2005
, “
3D Morphing for Generating Intermediate Roughing Levels in Multi-Axis Machining
,”
Comput.-Aided Des. Applic.
,
2
(
1–4
), pp.
115
123
. 10.1080/16864360.2005.10738359
9.
Lauwers
,
B.
, and
Lefebvre
,
P.
,
2006
, “
Five-axis Rough Milling Strategies for Complex Shaped Cavities Based on Morphing Technology
,”
CIRP Ann.
,
55
(
1
), pp.
59
62
. 10.1016/S0007-8506(07)60366-7
10.
Huang
,
B.
,
2013
, “
A Unified Approach for Integrated Computer-Aided Design and Manufacturing
,”
UCLA
,
Los Angeles, CA
.
11.
Gan
,
W.-F.
,
Fu
,
J.-Z.
,
Shen
,
H.-Y.
, and
Lin
,
Z.-W.
,
2014
, “
A Morphing Machining Strategy for Artificial Bone
,”
J. Zhejiang Univ., Sci., A
,
15
(
3
), pp.
157
171
. 10.1631/jzus.A1300274
12.
Narayanaswami
,
R.
, and
Pang
,
J.
,
2003
, “
Multiresolution Analysis as an Approach for Tool Path Planning in NC Machining
,”
Comput.-Aided Des.
,
35
(
2
), pp.
167
178
. 10.1016/S0010-4485(02)00050-7
13.
Young
,
H.-T.
,
Chuang
,
L.-C.
,
Gerschwiler
,
K.
, and
Kamps
,
S.
,
2004
, “
A Five-Axis Rough Machining Approach for a Centrifugal Impeller
,”
Int. J. Adv. Manuf. Technol.
,
23
(
3–4
), pp.
233
239
. 10.1007/s00170-003-1677-z
14.
Ming
,
L.
,
Ce
,
H.
, and
Hafeez
,
H. M.
,
2019
, “
Four-axis Trochoidal Toolpath Planning for Rough Milling of Aero-Engine Blisks
,”
Chin. J. Aeronaut.
,
32
(
8
), pp.
2009
2016
. 10.1016/j.cja.2018.09.001
15.
Dai
,
C.
,
Wang
,
C. C.
,
Wu
,
C.
,
Lefebvre
,
S.
,
Fang
,
G.
, and
Liu
,
Y.-J.
,
2018
, “
Support-free Volume Printing by Multi-Axis Motion
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
14
. 10.1145/3197517.3201342
16.
Li
,
Y.
,
Tang
,
K.
, and
Zeng
,
L.
,
2020
, “
A Voxel Model-Based Process-Planning Method for Five-Axis Machining of Complicated Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041012
. 10.1115/1.4046589
17.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
. 10.1007/s00170-013-5148-x
18.
Collins
,
J. S.
,
2018
, “
Digital Twin Volume Registration for Voxel-Based Closed-Loop Machining Systems
,”
Georgia Institute of Technology
,
Atlanta, GA
.
19.
Ameur
,
A.
,
2017
, “
Voxel-based Tool Sequence Optimization for 5-Axis Machining Using High Performance Computing
,”
Georgia Institute of Technology
,
Atlanta, GA
.
20.
Lynn
,
R.
,
Dinar
,
M.
,
Huang
,
N.
,
Collins
,
J.
,
Yu
,
J.
,
Greer
,
C.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2018
, “
Direct Digital Subtractive Manufacturing of a Functional Assembly Using Voxel-Based Models
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021006
. 10.1115/1.4037631
21.
Lynn
,
R.
,
Contis
,
D.
,
Hossain
,
M.
,
Huang
,
N.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2017
, “
Voxel Model Surface Offsetting for Computer-Aided Manufacturing Using Virtualized High-Performance Computing
,”
J. Manuf. Syst.
,
43
, pp.
296
304
. 10.1016/j.jmsy.2016.12.005
22.
Kurfess
,
T.
,
Lynn
,
R.
,
Saleeby
,
K.
,
Tucker
,
T.
, and
Saldana
,
C.
,
2018
, “
Multi-Axis Voxel-Based CNC Machining of Centrifugal Compressor Assemblies
,”
American Helicopter Society Forum 74.
https://par.nsf.gov/biblio/10066759
23.
Yu
,
J.
,
Lynn
,
R.
,
Tucker
,
T.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2017
, “
Model-free Subtractive Manufacturing From Computed Tomography Data
,”
Manuf. Lett.
,
13
, pp.
44
47
. 10.1016/j.mfglet.2017.06.004
24.
Crane
,
K.
,
Weischedel
,
C.
, and
Wardetzky
,
M.
,
2013
, “
Geodesics in Heat
,”
ACM Trans. Graph.
,
32
(
5
), pp.
1
11
. 10.1145/2516971.2516977
25.
Liao
,
S.-H.
,
Tong
,
R.-F.
,
Dong
,
J.-X.
, and
Zhu
,
F.-D.
,
2009
, “
Gradient Field Based Inhomogeneous Volumetric Mesh Deformation for Maxillofacial Surgery Simulation
,”
Comput. Graph.
,
33
(
3
), pp.
424
432
. 10.1016/j.cag.2009.03.018
26.
Botsch
,
M.
, and
Kobbelt
,
L.
,
2004
, “
A Remeshing Approach to Multiresolution Modeling
,”
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
, pp.
185
192
.
27.
Li
,
Y.
,
Zeng
,
L.
,
Tang
,
K.
, and
Xie
,
C.
,
2020
, “
Orientation-point Relation Based Inspection Path Planning Method for 5-Axis OMI System
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101827
. 10.1016/j.rcim.2019.101827
28.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Transactions on Mathematical Software (TOMS
,
22
(
4
), pp.
469
483
. 10.1145/235815.235821
You do not currently have access to this content.