Abstract

To form the required shapes from advanced high strength steels sheets, such as dual-phase (DP) steel, shearing processes are commonly used. In general, although good cut-edge characteristics can be often achieved by setting a small shearing clearance, a scar still remains a major defect on the cut-edge. Therefore, in the present study, the mechanism of scar formation of a DP steel sheet, grade SPFC980Y (JIS) subject to a shearing process was investigated and clarified based on the microstructural evolution, fracture mechanism, and a stress distribution analysis. The microstructural evolution in both tensile test specimens and sheared workpieces were observed to identify the fracture mechanism. The angle between the shear band and the elongated grain flow direction during tensile testing was examined and used to predict the angle of initial fracture and its propagation during the shearing process. With the stress distribution analysis of the shearing zone during the shearing process, the fracture could not propagate into the shearing zone and be directed to the die tip, resulting in the formation of a smooth region again. This feature occurred as a cyclic loop as the punch stroke proceeds and resulted in scar defects in the case of SPFC980Y. However, when the fracture propagation remained in the shearing zone, the fracture was not delayed and fracture was completely generated on the cut-edge in the case of a baseline SPCC steel.

References

1.
Nakayama
,
Y.
,
Mori
,
K.
, and
Maeno
,
T.
,
2018
, “
Springback-Free Mechanism in Hot Stamping of Ultra-High-Strength Steel Parts and Deformation Behavior and Quenchability for Thin Sheet
,”
Int. J. Adv. Manuf. Tech.
,
95
(
1–4
), pp.
459
467
. 10.1007/s00170-017-1203-3
2.
Peixinho
,
N.
,
Costa
,
S.
, and
Blanco
,
V.
,
2019
, “
Development of Forming Tool Concept Validator With Variable Stiffness Blank-Holder for High Strength Steel Applications
,”
Int. J. Lightweight Mat. Manuf.
,
2
(
2
), pp.
116
122
. 10.1016/j.ijlmm.2019.04.008
3.
Hakoyama
,
C. S.
,
Hakoyama
,
T.
,
Fukiharu
,
H.
, and
Kuwabara
,
T.
,
2021
, “
Fracture Prediction for Mild Steel Sheet and High Strength Steel Sheet Subjected to Draw Bending Using Forming Limit Stress Criterion
,”
J. Mater. Process. Technol.
,
287
. 10.1016/j.jmatprotec.2019.116313
4.
Wu
,
X.
,
Bahmanpour
,
H.
, and
Schmid
,
H.
,
2012
, “
Characterization of Mechanically Sheared Edges of Dual Phase Steels
,”
J. Mater. Process. Technol.
,
212
(
6
), pp.
1209
1224
. 10.1016/j.jmatprotec.2012.01.006
5.
Quazi
,
T. Z.
, and
Shaikh
,
R. S.
,
2012
, “
An Overview of Clearance Optimization in Sheet Metal Blanking Process
,”
Int. J. Mod. Eng. Res.
,
2
(
6
), pp.
4547
4558
.
6.
Feistle
,
M.
,
Golle
,
R.
, and
Volk
,
W.
,
2016
, “
Determining the Influence of Shear Cutting Parameters on the Edge-Cracking Susceptibility of High-Strength-Steels Using the Edge-Fracture-Tensile-Test
,”
Procedia CIRP
,
41
, pp.
1078
1083
. 10.1016/j.procir.2016.01.007
7.
Choi
,
H.
,
Kim
,
B.
, and
Ko
,
D.
, “
Effect of Clearance and Inclined Angle on Sheared Edge and Tool Failure in Trimming of DP980 Sheet
,”
J. Mech. Sci. Technol.
,
28
(
6
), pp.
2319
2328
. 10.1007/s12206-014-0522-7
8.
Mori
,
K.
,
Abe
,
Y.
, and
Sedoguchi
,
K.
,
2019
, “
Delayed Fracture in Cold Blanking of Ultra-High Strength Steel Sheets
,”
Cirp Ann. Manuf. Technol.
,
68
(
1
), pp.
297
300
. 10.1016/j.cirp.2019.04.111
9.
Murakawa
,
M.
,
Suzuki
,
M.
,
Shionome
,
T.
,
Komuro
,
F.
,
Harai
,
A.
,
Matsumoto
,
A.
, and
Koga
,
N.
,
2014
, “
Precision Piercing and Blanking of Ultrahigh-Strength Steel Sheets
,”
Procedia Eng.
,
81
, pp.
1114
1120
. 10.1016/j.proeng.2014.10.219
10.
Mori
,
K.
,
Abe
,
Y.
,
Kidoma
,
Y.
, and
Kadamo
,
P.
,
2013
, “
Slight Clearance Punching of Ultra-High Strength Steel Sheets Using Punch Having Small Round Edge
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
41
46
. 10.1016/j.ijmachtools.2012.09.005
11.
Phanitwong
,
W.
,
Sontamino
,
A.
, and
Thipprakmas
,
S.
,
2016
, “
Experimental Analysis of the Feasibility of Shaving Process Applied for High-Strength Steel Sheets
,”
Adv. Mater. Sci. Eng.
,
513
, pp.
1
6
. 10.1155/2016/1634840
12.
Taylor
,
M. D.
,
Choi
,
K. S.
,
Sun
,
X.
,
Matlock
,
D. K.
,
Packard
,
C. E.
,
Xu
,
L.
, and
Barlat
,
F.
,
2014
, “
Correlations Between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels
,”
Mater. Sci. Eng. A
,
597
, pp.
431
439
. 10.1016/j.msea.2013.12.084
13.
Darabi
,
A. C.
,
Chamani
,
H. R.
,
Kadkhodapour
,
J.
,
Anaraki
,
A. P.
,
Alaie
,
A.
, and
Ayatollahi
,
M. R.
,
2017
, “
Micromechanical Analysis of Two Heat-Treated Dual Phase Steels: DP800 and DP980
,”
Mech. of Mater.
,
110
, pp.
68
83
. 10.1016/j.mechmat.2017.04.009
14.
Thipprakmas
,
S.
, and
Phanitwong
,
W.
,
2012
, “
Finite Element Analysis of Flange-Forming Direction in the Hole Flanging Process
,”
Inter. J. Adv. Manuf. Technol.
,
61
(
5
), pp.
609
620
. 10.1007/s00170-011-3721-8
15.
Thipprakmas
,
S.
, and
Phanitwong
,
W.
,
2010
, “
Finite Element Analysis of Shaving Direction Effects in Reciprocating Shaving Process
,”
Steel Res. Int.
,
81
, pp.
1058
1061
.
16.
Sontamino
,
A.
, and
Thipprakmas
,
S.
,
2020
, “
Fabrication of Clean Cut Surface on High Strength Steel Using a New Shaving Die Design
,”
J. Mech. Sci. Tech.
,
35
, pp.
301
317
.
17.
Hu
,
X.
,
Sun
,
X.
,
Raghavan
,
K.
,
Comstrock
,
R. J.
, and
Ren
,
Y.
,
2020
, “
Linking Constituent Phase Properties to Ductility and Edge Stretch Ability of Two DP 980 Steels
,”
Mater. Sci. Eng. A
,
780
.
18.
Lange
,
K.
,
1985
,
Handbook of Metal Forming
,
McGraw-Hill Inc
,
New York
.
19.
Chumrum
,
P.
,
Koga
,
N.
, and
Premanond
,
V.
,
2015
, “
Experimental Investigation of Energy and Punch Wear in Piercing of Advanced High-Strength Steel Sheet
,”
Int. J. Adv. Manuf. Tech.
,
79
(
5–8
), pp.
1035
1042
. 10.1007/s00170-015-6902-z
20.
Dieter
,
G. E.
,
1988
,
Mechanical Metallurgy SI Metric Edition
,
McGraw-Hill
,
UK
, Chap. 6.
21.
Cui
,
Z.
,
Bhattacharya
,
S.
,
Green
,
D. E.
, and
Alpas
,
A. T.
,
2019
, “
Mechanisms of Die Wear and Wear-Induced Damage at the Trimmed Edge of High Strength Steel Sheets
,”
Wear
,
426–427
, pp.
1635
1645
. 10.1016/j.wear.2019.01.113
22.
Sontamino
,
A.
, and
Thipprakmas
,
S.
,
2017
, “
Cut Surface Features in Various Die-Cutting Processes
,”
Key Eng. Mater.
,
719
, pp.
127
131
. 10.4028/www.scientific.net/KEM.719.127
23.
Thipprakmas
,
S.
,
Phanitwong
,
W.
,
Chinwithee
,
M.
, and
Morkprom
,
T.
,
2010
, “
Reciprocating Shaving Approach to Eliminate Crack and Burr Formations in Pressed Parts
,”
Key Eng. Mater.
,
443
, pp.
201
206
. 10.4028/www.scientific.net/KEM.443.201
You do not currently have access to this content.