Abstract

In a ship assembly process, a large number of compliant parts are involved. The ratio of the part thickness to the length or the width is typically 0.001–0.012. Fixture design is a critical task in the ship assembly process due to its impact on the deformation and dimensional variation of the compliant parts. In current practice, fixtures are typically uniformly distributed under the part to be assembled, which is non-optimal, and large dimensional gaps may occur during assembly. This paper proposed a methodology for the optimal design of the fixture layout in the ship assembly process by systematically integrating direct stiffness method and simulated annealing algorithm, which aims to minimize dimensional gaps along the assembly interface to further improve the quality and efficiency of seam welding. The case study shows that the proposed method significantly reduced the dimensional gaps of the compliant curved panel parts in a ship assembly process.

References

1.
McPherson
,
N. A.
,
Galloway
,
A. M.
, and
McGhie
,
W.
,
2013
, “
Thin Plate Buckling Mitigation and Reduction Challenges for Naval Ships
,”
J. Mar. Eng. Technol.
,
12
(
2
), pp.
3
10
.
2.
Huang
,
T. D.
,
Dong
,
P.
,
DeCan
,
L.
,
Harwig
,
D.
, and
Kumar
,
R.
,
2004
, “
Fabrication and Engineering Technology for Lightweight Ship Structures, Part 1: Distortions and Residual Stresses in Panel Fabrication
,”
J. Ship Prod.
,
20
(
1
), pp.
43
59
.
3.
Liu
,
C.
,
Liu
,
T.
,
Du
,
J.
,
Zhang
,
Y.
,
Lai
,
X.
, and
Shi
,
J.
,
2020
, “
Hybrid Nonlinear Variation Modeling of Compliant Metal Plate Assemblies Considering Welding Shrinkage and Angular Distortion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041003
. https://doi.org/10.1115/1.4046250
4.
Deng
,
D.
,
Murakawa
,
H.
, and
Ueda
,
Y.
,
2002
, “
Theoretical Prediction of Welding Distortion Considering Positioning and the Gap Between Parts
,”
The Twelfth International Offshore and Polar Engineering Conference
,
Kitakyushu, Japan
,
May 26–31
, pp.
337
343
.
5.
Liang
,
W.
, and
Deng
,
D.
,
2018
, “
Influences of Heat Input, Welding Sequence and External Restraint on Twisting Distortion in an Asymmetrical Curved Stiffened Panel
,”
Adv. Eng. Softw.
,
115
, pp.
439
451
. 10.1016/j.advengsoft.2017.11.002
6.
Penttilä
,
S.
,
Kah
,
P.
,
Ratava
,
J.
, and
Pirinen
,
M.
,
2017
, “
Penetration and Quality Control With Artificial Neural Network Welding System
,”
The 27th International Ocean and Polar Engineering Conference
,
San Francisco, CA
,
June 25–30
, pp.
54
61
.
7.
De Meter
,
E.
,
1995
, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Eng. Ind.
,
117
(
2
), pp.
186
193
. 10.1115/1.2803293
8.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1997
, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
593
602
. 10.1115/1.2831192
9.
Kim
,
P.
, and
Ding
,
Y.
,
2004
, “
Optimal Design of Fixture Layout in Multistation Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
1
(
2
), pp.
133
145
. 10.1109/TASE.2004.835570
10.
Kim
,
P.
, and
Ding
,
Y.
,
2005
, “
Optimal Engineering System Design Guided by Data-Mining Methods
,”
Technometrics
,
47
(
3
), pp.
336
348
. 10.1198/004017005000000157
11.
Phoomboplab
,
T.
, and
Ceglarek
,
D.
,
2008
, “
Process Yield Improvement Through Optimum Design of Fixture Layouts in 3D Multistation Assembly Systems
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061005
. 10.1115/1.2977826
12.
Söderberg
,
R.
, and
Carlson
,
J. S.
,
1999
, “
Locating Scheme Analysis for Robust Assembly and Fixture Design
,”
Proceedings of the 1999 ASME Design Engineering Technical Conferences
,
Las Vegas, NV
,
Sept. 12–15
.
13.
Lööf
,
J.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
515
522
.
14.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J. S.
, “
Managing Physical Dependencies Through Location System Design
,”
J. Eng. Des.
,
17
(
4
), pp.
325
346
. 10.1080/09544820500275685
15.
Rearick
,
M. R.
,
Hu
,
S.
, and
Wu
,
S.
,
1993
, “
Optimial Fixture Design for Deformable Sheet Metal Workpieces
,”
Trans. NAMRI/SME
,
11
, p.
407
.
16.
Cai
,
W.
, and
Hu
,
S.
,
1996
, “
Optimal Fixture Configuration Design for Sheet Metal Assembly With Springback
,”
Trans. NAMRI/SME
,
XXIV
, pp.
229
234
.
17.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
. 10.1115/1.2831031
18.
Das
,
A.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2015
, “
Fixture Design Optimisation Considering Production Batch of Compliant Non-Ideal Sheet Metal Parts
,”
Procedia Manuf.
,
1
, pp.
157
168
. 10.1016/j.promfg.2015.09.079
19.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Ceglarek
,
D.
,
2016
, “
Fixture Capability Optimisation for Early-Stage Design of Assembly System With Compliant Parts Using Nested Polynomial Chaos Expansion
,”
Procedia CIRP
,
41
, pp.
87
92
. 10.1016/j.procir.2015.12.101
20.
Kulankara
,
K.
,
Satyanarayana
,
S.
, and
Melkote
,
S. N.
,
2002
, “
Iterative Fixture Layout and Clamping Force Optimization Using the Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
119
125
. 10.1115/1.1414127
21.
Menassa
,
R.
, and
DeVries
,
W.
,
1991
, “
Optimization Methods Applied to Selecting Support Positions in Fixture Design
,”
ASME J. Eng. Ind.
,
113
(
11
), pp.
412
418
. 10.1115/1.2899715
22.
Dahlström
,
S.
, and
Camelio
,
J. A.
,
2003
Fixture Design Methodology for Sheet Metal Assembly Using Computer Simulations
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, pp.
321
328
.
23.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Impact of Fixture Design on Sheet Metal Assembly Variation
,”
J. Manuf. Syst.
,
23
(
3
), pp.
182
193
. 10.1016/S0278-6125(05)00006-3
24.
Liao
,
Y.-J.
,
Hu
,
S.
, and
Stephenson
,
D.
,
1998
, “
Fixture Layout Optimization Considering Workpiece-Fixture Contact Interaction: Simulation Results
,”
Transactions of NAMRI/SME
,
26
, pp.
341
346
.
25.
Dou
,
J.
,
Wang
,
X.
, and
Wang
,
L.
,
2011
, “
Machining Fixture Layout Optimization Using Particle Swarm Optimization Algorithm
,”
Fourth International Seminar on Modern Cutting and Measurement Engineering
,
Beijing, China
,
Dec. 10–12
, vol.
7997
,
International Society for Optics and Photonics
, p.
79970S
.
26.
Cai
,
W.
,
2008
, “
Fixture Optimization for Sheet Panel Assembly Considering Welding Gun Variations
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
222
(
2
), pp.
235
246
. 10.1243/09544062JMES457
27.
Xing
,
Y.
,
Hu
,
M.
,
Zeng
,
H.
, and
Wang
,
Y.
,
2015
, “
Fixture Layout Optimisation Based on a Non-Domination Sorting Social Radiation Algorithm for Auto-Body Parts
,”
Int. J. Prod. Res.
,
53
(
11
), pp.
3475
3490
. 10.1080/00207543.2014.1003662
28.
Xing
,
Y.
,
Chen
,
W.
,
Li
,
X.
,
Lu
,
J.
, and
Zhang
,
H.
,
2015
, “
Multi-Station Fixture Location Layout Optimization Design for Sheet Metal Parts
,”
J. Comput. Theor. Nanosci.
,
12
(
9
), pp.
2903
2908
. 10.1166/jctn.2015.4197
29.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101004
. 10.1115/1.4037106
30.
Yang
,
B.
,
Wang
,
Z.
,
Yang
,
Y.
,
Kang
,
Y.
, and
Li
,
X.
,
2017
, “
Optimum Fixture Locating Layout for Sheet Metal Part by Integrating Kriging With Cuckoo Search Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
327
340
. 10.1007/s00170-016-9638-5
31.
Lu
,
C.
, and
Zhao
,
H.-W.
,
2015
, “
Fixture Layout Optimization for Deformable Sheet Metal Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
78
(
1–4
), pp.
85
98
. 10.1007/s00170-014-6647-0
32.
Reddy
,
J.
,
2004
,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
33.
Wu
,
B.
,
Xu
,
Z.
, and
Li
,
Z.
,
2008
, “
A Note on Imposing Displacement Boundary Conditions in Finite Element Analysis
,”
Commun. Numer. Methods Eng.
,
24
(
9
), pp.
777
784
. 10.1002/cnm.989
34.
Korte
,
B.
, and
Vygen
,
J.
,
2012
,
Combinatorial Optimization
,
Springer
,
Heidelberg
.
35.
Blum
,
C.
, and
Roli
,
A.
,
2003
, “
Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison
,”
ACM Comput. Surv.
(CSUR),
35
(
3
), pp.
268
308
. 10.1145/937503.937505
36.
Weinan
,
E.
,
Li
,
T.
, and
Vanden-Eijnden
,
E.
,
2019
,
Applied Stochastic Analysis
,
American Mathematical Society
,
Providence
.
37.
Smith
,
A. E.
, and
Coit
,
D. W.
,
1997
, “
Penalty Functions
,”
Handb. Evol. Comput.
,
97
(
1
), p. C5.
38.
Beichl
,
I.
, and
Sullivan
,
F.
,
2000
, “
The Metropolis Algorithm
,”
Comput. Sci. Eng.
,
2
(
1
), pp.
65
69
. 10.1109/5992.814660
39.
Talatahari
,
S.
,
Alavi
,
A. H.
, and
Gandomi
,
A. H.
,
2013
,
Metaheuristics in Water, Geotechnical and Transport Engineering
,
Elsevier Science and Technology Books, Incorporated
,
Newnes
.
40.
Stewart
,
M. L.
,
2004
, “
Variation Simulation of Fixtured Assembly Processes for Compliant Structures Using Piecewise-Linear Analysis
,”
Dissertation
,
Brigham Young University
.
41.
Taban
,
E.
,
Deleu
,
E.
,
Dhooge
,
A.
, and
Kaluc
,
E.
,
2009
, “
Laser Welding of Modified 12% Cr Stainless Steel: Strength, Fatigue, Toughness, Microstructure and Corrosion Properties
,”
Mater. Des.
,
30
(
4
), pp.
1193
1200
. 10.1016/j.matdes.2008.06.030
You do not currently have access to this content.