Abstract

Cryogenic machining of titanium alloys using the internal cooling method is being identified as an alternative effective process to current practice of machining materials with poor thermal conductivity. The choice of jet parameters is particularly important for improving their machining quality and saving the production cost simultaneously. This research aimed to minimize the surface roughness by optimizing the comprehensive jet parameters in cryogenic milling Ti-6Al-4V. By comparing the cooling capability of liquid nitrogen and gaseous nitrogen, the influence mechanism of nitrogen phase on surface roughness was illuminated. A self-developed cryogenic machine tool with conveying liquid nitrogen through the spindle and tool was specially used to carry out milling experiments. The results indicated that the nitrogen phase had a most significant effect on surface roughness, followed by the pressure while the effect of flowrate was lowest. A lower volume fraction of gas, a higher pressure, and a proper flowrate could produce a lower surface roughness. An optimal combination of jet parameters was ultimately selected as the liquid nitrogen with 45 l/h of flowrate and 0.6 MPa of pressure to obtain the minimum surface roughness at 0.076 μm.

References

1.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
. 10.1016/S0924-0136(96)00030-1
2.
Chen
,
G.
,
Ren
,
C.
,
Zou
,
Y.
,
Qin
,
X.
,
Lu
,
L.
, and
Li
,
S.
,
2019
, “
Mechanism for Material Removal in Ultrasonic Vibration Helical Milling of Ti-6Al-4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
138
, pp.
1
13
. 10.1016/j.ijmachtools.2018.11.001
3.
Xie
,
J.
,
Luo
,
M. J.
,
Wu
,
K. K.
,
Yang
,
L. F.
, and
Li
,
D. H.
,
2013
, “
Experimental Study on Cutting Temperature and Cutting Force in Dry Turning of Titanium Alloy Using a Non-Coated Micro-Grooved Tool
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
25
36
. 10.1016/j.ijmachtools.2013.05.006
4.
Wang
,
Z. G.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2005
, “
Tool Wear Characteristics of Binderless CBN Tools Used in High-Speed Milling of Titanium Alloys
,”
Wear
,
258
(
5–6
), pp.
752
758
. 10.1016/j.wear.2004.09.066
5.
Heigel
,
J. C.
,
Whitenton
,
E.
,
Lane
,
B.
,
Donmez
,
M. A.
,
Madhavan
,
V.
, and
Moscoso-Kingsley
,
W.
,
2017
, “
Infrared Measurement of the Temperature at the Tool–Chip Interface While Machining Ti-6Al-4V
,”
J. Mater. Process. Technol.
,
243
, pp.
123
130
. 10.1016/j.jmatprotec.2016.11.026
6.
Shokrani
,
A.
,
Al-Samarrai
,
I.
, and
Newman
,
S. T.
,
2019
, “
Hybrid Cryogenic MQL for Improving Tool Life in Machining of Ti-6Al-4V Titanium Alloy
,”
J. Manuf. Process
,
43
, pp.
229
243
. 10.1016/j.jmapro.2019.05.006
7.
Liang
,
X.
,
Liu
,
Z.
,
Yao
,
G.
,
Wang
,
B.
, and
Ren
,
X.
,
2019
, “
Investigation of Surface Topography and Its Deterioration Resulting From Tool Wear Evolution When Dry Turning of Titanium Alloy Ti-6Al-4V
,”
Tribol. Int.
,
135
, pp.
130
142
. 10.1016/j.triboint.2019.02.049
8.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
. 10.1016/j.ijmachtools.2010.11.003
9.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavec
,
F.
,
Putz
,
M.
,
Rech
,
J.
,
Schulze
,
V.
, and
Umbrello
,
D.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
713
736
. 10.1016/j.cirp.2016.06.007
10.
Yildiz
,
Y.
, and
Nalbant
,
M.
,
2008
, “
A Review of Cryogenic Cooling in Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
947
964
. 10.1016/j.ijmachtools.2008.01.008
11.
Hong
,
S. Y.
,
Markus
,
I.
, and
Jeong
,
W.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2245
2260
. 10.1016/S0890-6955(01)00041-4
12.
Kaynak
,
Y.
, and
Gharibi
,
A.
,
2019
, “
Cryogenic Machining of Titanium Ti-5553 Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041012
. 10.1115/1.4042605
13.
Umbrello
,
D.
, and
Rotella
,
G.
,
2018
, “
Fatigue Life of Machined Ti6Al4V Alloy Under Different Cooling Conditions
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
99
102
. 10.1016/j.cirp.2018.03.017
14.
Wang
,
F.
,
Wang
,
Y.
, and
Liu
,
H.
,
2018
, “
Tool Wear Behavior of Thermal-Mechanical Effect for Milling Ti-6Al-4V Alloy in Cryogenic
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2077
2088
. 10.1007/s00170-017-1012-8
15.
Sartori
,
S.
,
Taccin
,
M.
,
Pavese
,
G.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2018
, “
Wear Mechanisms of Uncoated and Coated Carbide Tools When Machining Ti6Al4V Using LN2 and Cooled N2
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
1255
1264
. 10.1007/s00170-017-1289-7
16.
Golda
,
P.
,
Schießl
,
R.
, and
Maas
,
U.
,
2019
, “
Heat Transfer Simulation of a Cryogenic Cooling Stream in Machining Operation
,”
Int. J. Heat Mass Transfer
,
144
, p.
118616
. 10.1016/j.ijheatmasstransfer.2019.118616
17.
Lequien
,
P.
,
Poulachon
,
G.
,
Outeiro
,
J. C.
, and
Rech
,
J.
,
2018
, “
Hybrid Experimental/Modelling Methodology for Identifying the Convective Heat Transfer Coefficient in Cryogenic Assisted Machining
,”
Appl. Therm. Eng.
,
128
, pp.
500
507
. 10.1016/j.applthermaleng.2017.09.054
18.
Danish
,
M.
,
Ginta
,
T. L.
,
Habib
,
K.
,
Carou
,
D.
,
Rani
,
A. M. A.
, and
Saha
,
B. B.
,
2017
, “
Thermal Analysis During Turning of AZ31 Magnesium Alloy Under Dry and Cryogenic Conditions
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2855
2868
. 10.1007/s00170-016-9893-5
19.
Kenda
,
J.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2011
, “
Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based Alloy – Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041009
. 10.1115/1.4004610
20.
Rotella
,
G.
,
Dillon
,
O. W.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I. S.
,
2014
, “
The Effects of Cooling Conditions On Surface Integrity in Machining of Ti6Al4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
47
55
. 10.1007/s00170-013-5477-9
21.
Jebaraj
,
M.
, and
Pradeep Kumar
,
M.
,
2019
, “
Effect of Cryogenic CO2 and LN2 Coolants in Milling of Aluminum Alloy
,”
Mater. Manuf. Process.
,
34
(
5
), pp.
511
520
. 10.1080/10426914.2018.1532591
22.
Pereira
,
W. H.
, and
Delijaicov
,
S.
,
2019
, “
Surface Integrity of INCONEL 718 Turned Under Cryogenic Conditions at High Cutting Speeds
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2163
2177
. 10.1007/s00170-019-03946-1
23.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis with Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
. 10.1115/1.4034279
24.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2016
, “
Investigation of the Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti-6Al-4V Titanium Alloy
,”
J. Manuf. Process.
,
21
, pp.
172
179
. 10.1016/j.jmapro.2015.12.002
25.
Mia
,
M.
,
Khan
,
M. A.
, and
Dhar
,
N. R.
,
2017
, “
Study of Surface Roughness and Cutting Forces Using ANN, RSM, and ANOVA in Turning of Ti-6Al-4V Under Cryogenic Jets Applied at Flank and Rake Faces of Coated WC Tool
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
975
991
. 10.1007/s00170-017-0566-9
26.
Zhao
,
W.
,
Ren
,
F.
,
Iqbal
,
A.
,
Gong
,
L.
,
He
,
N.
, and
Xu
,
Q.
,
2020
, “
Effect of Liquid Nitrogen Cooling on Surface Integrity in Cryogenic Milling of Ti-6Al-4 V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
106
(
3–4
), pp.
1497
1508
. 10.1007/s00170-019-04721-y
27.
Schoop
,
J.
,
Ambrosy
,
F.
,
Zanger
,
F.
,
Schulze
,
V.
,
Balk
,
T. J.
, and
Jawahir
,
I. S.
,
2016
, “
Cryogenic Machining of Porous Tungsten for Enhanced Surface Integrity
,”
J. Mater. Process. Technol.
,
229
, pp.
614
621
. 10.1016/j.jmatprotec.2015.10.002
28.
Umbrello
,
D.
,
Micari
,
F.
, and
Jawahir
,
I. S.
,
2012
, “
The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining: A Comparison With Dry Machining
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
103
106
. 10.1016/j.cirp.2012.03.052
29.
Sadik
,
M. I.
,
Isakson
,
S.
,
Malakizadi
,
A.
, and
Nyborg
,
L.
,
2016
, “
Influence of Coolant Flow Rate on Tool Life and Wear Development in Cryogenic and Wet Milling of Ti-6Al-4V
,”
Procedia CIRP
,
46
, pp.
91
94
. 10.1016/j.procir.2016.02.014
30.
Ayed
,
Y.
,
Germain
,
G.
,
Melsio
,
A. P.
,
Kowalewski
,
P.
, and
Locufier
,
D.
,
2017
, “
Impact of Supply Conditions of Liquid Nitrogen on Tool Wear and Surface Integrity When Machining the Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
1199
1206
. 10.1007/s00170-017-0604-7
31.
Lequien
,
P.
,
Poulachon
,
G.
, and
Outeiro
,
J. C.
,
2018
, “
Thermomechanical Analysis Induced by Interrupted Cutting of Ti6Al4 V Under Several Cooling Strategies
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
91
94
. 10.1016/j.cirp.2018.03.018
32.
Tahmasebi
,
E.
,
Albertelli
,
P.
,
Lucchini
,
T.
,
Monno
,
M.
, and
Mussi
,
V.
,
2019
, “
CFD and Experimental Analysis of the Coolant Flow in Cryogenic Milling
,”
Int. J. Mach. Tools Manuf.
,
140
, pp.
20
33
. 10.1016/j.ijmachtools.2019.02.003
33.
Pusavec
,
F.
,
Lu
,
T.
,
Courbon
,
C.
,
Rech
,
J.
,
Aljancic
,
U.
,
Kopac
,
J.
, and
Jawahir
,
I. S.
,
2016
, “
Analysis of the Influence of Nitrogen Phase and Surface Heat Transfer Coefficient on Cryogenic Machining Performance
,”
J. Mater. Process. Technol.
,
233
, pp.
19
28
. 10.1016/j.jmatprotec.2016.02.003
34.
Lu
,
T.
,
Kudaravalli
,
R.
, and
Georgiou
,
G.
,
2018
, “
Cryogenic Machining Through the Spindle and Tool for Improved Machining Process Performance and Sustainability: Pt. I, System Design
,”
Procedia Manuf.
,
21
, pp.
266
272
. 10.1016/j.promfg.2018.02.120
35.
Kinard
,
D. A.
,
2018
, “
F-35 Digital Thread and Advanced Manufacturing
,”
Proceedings of 2018 Aviation Technology, Integration, and Operations Conference
,
Atlanta, GA
,
June 25–29
, pp.
161
180
.
36.
Griffiths
,
B.
,
2001
,
Manufacturing Surface Technology: Surface Integrity and Functional Performance
,
Elsevier
,
London, UK
.
37.
Longère
,
P.
,
2018
, “
Respective/Combined Roles of Thermal Softening and Dynamic Recrystallization in Adiabatic Shear Banding Initiation
,”
Mech. Mater.
,
117
, pp.
81
90
. 10.1016/j.mechmat.2017.10.003
38.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
10
), pp.
1417
1437
. 10.1016/S0890-6955(01)00026-8
39.
Pušavec
,
F.
,
Grguraš
,
D.
,
Koch
,
M.
, and
Krajnik
,
P.
,
2019
, “
Cooling Capability of Liquid Nitrogen and Carbon Dioxide in Cryogenic Milling
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
73
76
. 10.1016/j.cirp.2019.03.016
40.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
Hoboken, US
.
41.
Wang
,
M.
, and
Chang
,
H.
,
2004
, “
Experimental Study of Surface Roughness in Slot End Milling AL2014-T6
,”
Int. J. Mach. Tools Manuf.
,
44
(
1
), pp.
51
57
. 10.1016/j.ijmachtools.2003.08.011
42.
Kwak
,
J.
,
2005
, “
Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
327
334
. 10.1016/j.ijmachtools.2004.08.007
43.
Brient
,
A.
,
Brissot
,
M.
,
Rouxel
,
T.
, and
Sangleboeuf
,
J. C.
,
2011
, “
Influence of Grinding Parameters on Glass Workpieces Surface Finish Using Response Surface Methodology
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
044501
. 10.1115/1.4004317
44.
Attanasio
,
A.
,
Ceretti
,
E.
,
Giardini
,
C.
, and
Cappellini
,
C.
,
2013
, “
Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051012
. 10.1115/1.4025010
45.
Nouioua
,
M.
,
Yallese
,
M. A.
,
Khettabi
,
R.
,
Belhadi
,
S.
,
Bouhalais
,
M. L.
, and
Girardin
,
F.
,
2017
, “
Investigation of the Performance of the MQL, Dry, and Wet Turning by Response Surface Methodology (RSM) and Artificial Neural Network (ANN)
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2485
2504
. 10.1007/s00170-017-0589-2
46.
Scheffe
,
H.
,
1999
,
The Analysis of Variance
,
John Wiley & Sons
,
New York, US
.
47.
Kim
,
J.
,
Kim
,
K.
, and
Kwon
,
D.
,
2016
, “
Evaluation of High-Temperature Tensile Properties of Ti-6Al-4V Using Instrumented Indentation Testing
,”
Met. Mater. Int.
,
22
(
2
), pp.
209
215
. 10.1007/s12540-016-5619-3
48.
Vilaro
,
T.
,
Colin
,
C.
, and
Bartout
,
J. D.
,
2011
, “
As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting
,”
Metall. Mater. Trans. A
,
42
(
10
), pp.
3190
3199
. 10.1007/s11661-011-0731-y
49.
Klocke
,
F.
,
Sangermann
,
H.
,
Krämer
,
A.
, and
Lung
,
D.
,
2011
, “
Influence of a High-Pressure Lubricoolant Supply on Thermo-Mechanical Tool Load and Tool Wear Behaviour in the Turning of Aerospace Materials
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
225
(
1
), pp.
52
61
. 10.1177/09544054JEM2082
You do not currently have access to this content.