Abstract

This paper reports on the 3D printing of flexible and stretchable parts based on multiwall carbon nanotube (MWCNT)/polyester-based thermoplastic polyurethane (TPU) nanocomposites. The rheological properties of the WCNT/TPU nanocomposites with different wt% of MWCNTs (0.1–3) were determined and used as guidance for the extrusion and 3D printing processes. MWCNT/TPU filaments were extruded and used for 3D printing of different flexible and stretchable parts. The mechanical, electrical, and piezoresistive response of the MWCNT/TPU nanocomposite filaments and 3D printed parts under static and monotonic loading was studied. The experimental results show that with increasing temperature and shear rate, respectively, the shear viscosity of the MWCNT/TPU nanocomposite decreases, whereas the viscosity increases with increasing wt% of MWCNTs. With the addition of MWCNTs, the elastic modulus and tensile strength of the feedstock filament all increase, enhancing the printability of TPU by increasing the buckling resistance and the stability of the 3D printed layer. The electrical conductivity of the 3D printed MWCNT/TPU nanocomposites increases with increasing wt% of MWCNTs and exceeds the conductivity of the filaments. The 3D printed MWCNT/TPU nanocomposites with 3 wt% show an electrical conductivity about 10 S/m, irrespective of the printing direction. Moreover, the 3D printed MWCNT/TPU nanocomposites exhibit good mechanical properties and high piezoresistive sensitivity with gauge factor (50–600) dependent on both strain and printing direction.

References

1.
Jian
,
M.
,
Wang
,
C.
,
Wang
,
Q.
,
Wang
,
H.
,
Xia
,
K.
,
Yin
,
Z.
,
Zhang
,
M.
,
Liang
,
X.
, and
Zhang
,
Y.
,
2017
, “
Advanced Carbon Materials for Flexible and Wearable Sensors
,”
Sci. China Mater.
,
60
(
11
), pp.
1026
1062
. 10.1007/s40843-017-9077-x
2.
Ge
,
G.
,
Huang
,
W.
,
Shao
,
J.
, and
Dong
,
X.
,
2018
, “
Recent Progress of Flexible and Wearable Strain Sensors for Human-Motion Monitoring
,”
J. Semicond.
,
39
(
1
), p.
011012
. 10.1088/1674-4926/39/1/011012
3.
Alamusi
,
Hu
,
N.
,
Fukunaga
,
H.
,
Atobe
,
S.
,
Liu
,
Y.
, and
Li
,
J.
,
2011
, “
Piezoresistive Strain Sensors Made From Carbon Nanotubes Based Polymer Nanocomposites
,”
Sensors
,
11
(
11
), pp.
10691
10723
. 10.3390/s111110691
4.
Kumar
,
K. S.
,
Po-Yen Chen
,
P. Y.
, and
Ren
,
H.
,
2019
, “
A Review of Printable Flexible and Stretchable Tactile Sensors
,”
Research
,
2019
, p.
3018568
. 10.34133/2019/3018568
5.
Parameswaran
,
C.
, and
Gupta
,
D.
,
2019
, “
Large Area Flexible Pressure/Strain Sensors and Arrays Using Nanomaterials and Printing Techniques
,”
Nano Convergence
,
6
(
1
), p.
28
. 10.1186/s40580-019-0198-x
6.
Bautista-Quijano
,
J. R.
,
Avilés
,
F.
, and
Cauich-Rodriguez
,
J. V.
,
2013
, “
Sensing of Large Strain Using Multiwall Carbon Nanotube/Segmented Polyurethane Composites
,”
J. App. Polym. Sci.
,
130
(
1
), pp.
375
382
. 10.1002/app.39177
7.
Kumar
,
S.
,
Gupta
,
T. K.
, and
Varadarajan
,
K. M.
,
2019
, “
Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing
,”
Composites Part B
,
177
, p.
107285
. 10.1016/j.compositesb.2019.107285
8.
Sang
,
Z.
,
Ke
,
K.
, and
Manas-Zloczower
,
I.
,
2019
, “
Effect of Carbon Nanotube Morphology on Properties in Thermoplastic Elastomer Composites for Strain Sensors
,”
Compos. Part A
,
121
, pp.
207
212
. 10.1016/j.compositesa.2019.03.007
9.
Ye
,
W.
,
Wu
,
W.
,
Hu
,
X.
,
Lin
,
G.
,
Guo
,
L.
,
Qu
,
H.
, and
Zhao
,
J.
,
2019
, “
3D Printing of Carbon Nanotubes Reinforced Thermoplastic Polyimide Composites With Controllable Mechanical and Electrical Performance
,”
Compos. Sci. Technol.
,
182
, p.
107671
. 10.1016/j.compscitech.2019.05.028
10.
Arifa
,
M. F.
,
Kumar
,
S.
,
Gupta
,
T. K.
, and
Varadarajan
,
K. M.
,
2018
, “
Strong Linear-Piezoresistive-Response of Carbon Nanostructures Reinforced Hyperelastic Polymer Nanocomposites
,”
Compos. Part A
,
113
, pp.
141
149
. 10.1016/j.compositesa.2018.07.021
11.
Sun
,
X.
,
Sun
,
J.
,
Li
,
T.
,
Zheng
,
S.
,
Wang
,
C.
,
Tan
,
W.
,
Zhang
,
J.
,
Liu
,
C.
,
Ma
,
T.
,
Qi
,
Z.
,
Liu
,
C.
, and
Xue
,
N.
,
2019
, “
Flexible Tactile Electronic Skin Sensor With 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites
,”
Nano-Micro Lett.
,
11
(
1
), p.
57
. 10.1007/s40820-019-0288-7
12.
Cao
,
X.
,
Wei
,
X.
,
Li
,
G.
,
Hu
,
C.
,
Dai
,
K.
,
Guo
,
J.
,
Zheng
,
G.
,
Liu
,
C.
,
Shen
,
C.
, and
Guo
,
Z.
,
2017
, “
Strain Sensing Behaviors of Epoxy Nanocomposites With Carbon Nanotubes Under Cyclic Deformation
,”
Polymer
,
112
, pp.
1
9
. 10.1016/j.polymer.2017.01.068
13.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Compos. Part B
,
110
, pp.
442
458
. 10.1016/j.compositesb.2016.11.034
14.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
. 10.1016/j.compstruct.2017.08.088
15.
Nadgorny
,
M.
, and
Ameli
,
A.
,
2018
, “
Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Services
,”
ACS Appl. Mater. Interfaces
,
10
(
21
), pp.
17489
17507
. 10.1021/acsami.8b01786
16.
Valino
,
A. D.
,
Dizon
,
J. R. C.
,
Espera
,
A. H.
, Jr.
,
Chen
,
Q.
,
Messman
,
J.
, and
Advincula
,
R. C.
,
2019
, “
Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites
,”
Prog. Polym. Sci.
,
98
, p.
101162
. 10.1016/j.progpolymsci.2019.101162
17.
Mora
,
A.
,
Verma
,
P.
, and
Kumar
,
S.
,
2020
, “
Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling
,”
Composites Part B
,
183
, p.
107600
. 10.1016/j.compositesb.2019.107600
18.
Zhang
,
D.
,
Chi
,
B.
,
Li
,
B.
,
Gao
,
Z.
,
Du
,
Y.
,
Guo
,
J.
, and
Wei
,
J.
,
2016
, “
Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing
,”
Synth. Met.
,
217
, pp.
79
86
. 10.1016/j.synthmet.2016.03.014
19.
Flowers
,
P. F.
,
Reyes
,
C.
,
Ye
,
S.
,
Kim
,
M. J.
, and
Wiley
,
B. J.
,
2017
, “
3D Printing Electronic Components and Circuits With Conductive Thermoplastic Filament
,”
Addit. Manuf.
,
18
, pp.
156
163
. 10.1016/j.addma.2017.10.002
20.
Christ
,
J. F.
,
Aliheidari
,
N.
,
Ameli
,
A.
, and
Potschke
,
P.
,
2017
, “
3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
,”
Mater. Des.
,
131
, pp.
394
401
. 10.1016/j.matdes.2017.06.011
21.
Liu
,
C.
,
Huang
,
N.
,
Xu
,
F.
,
Tong
,
J.
,
Chen
,
Z.
,
Gui
,
X.
,
Fu
,
Y.
, and
Lao
,
C.
,
2018
, “
3D Printing Technologies for Flexible Tactile Sensors Toward Wearable Electronics and Electronic Skin
,”
Polymers
,
10
(
6
), p.
629
. 10.3390/polym10060629
22.
Christ
,
J. F.
,
Aliheidari
,
N.
,
Potschke
,
P.
, and
Ameli
,
A.
,
2019
, “
Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
,”
Polymers
,
11
(
1
), p.
11
. 10.3390/polym11010011
23.
Nanocyl Technical Data Sheet: PLASTICYL TPU1001
, Edited
Jan
.
26
,
2016
.
24.
Whyman
,
S.
,
Arif
,
K. M.
, and
Potgieter
,
J.
,
2018
, “
Design and Development of an Extrusion System for 3D Printing Biopolymer Pellets
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3417
3428
. 10.1007/s00170-018-1843-y
25.
Sanchez
,
L. C.
,
Beatrice
,
C. A. G.
,
Lotti
,
C.
,
Marini
,
J.
,
Bettini
,
S. H. P.
, and
Costa
,
L. C.
,
2019
, “
Rheological Approach for an Additive Manufacturing Printer Based on Material Extrusion
,”
Int. J. Adv. Manuf. Technol.
,
105
(
5–6
), pp.
2403
2414
. 10.1007/s00170-019-04376-9
26.
Heller
,
B. P.
,
Smith
,
D. E.
, and
Jack
,
D. A.
,
2016
, “
Effects of Extrudate Swell and Nozzle Geometry on Fiber Orientation in Fused Filament Fabrication Nozzle Flow
,”
Addit. Manuf.
,
12
(
Part B
), pp.
252
264
. 10.1016/j.addma.2016.06.005
27.
Stan
,
F.
,
Rosculet
,
R. T.
, and
Fetecau
,
C.
,
2019
, “
Direct Current Method With Reversal Polarity for Electrical Conductivity Measurement of TPU/MWCNT Composites
,”
Measurement
,
136
, pp.
345
355
. 10.1016/j.measurement.2018.12.107
28.
Nguyen
,
N. A.
,
Bowland
,
C. C.
, and
Naskar
,
A. K.
,
2018
, “
A General Method to Improve 3D-Printability and Inter-Layer Adhesion in Lignin-Based Composites
,”
Appl. Mater. Today
,
12
, pp.
138
152
. 10.1016/j.apmt.2018.03.009
29.
Chen
,
D.
,
Zhang
,
W. A.
, and
He
,
P. S.
,
2005
, “
Capillary Extrusion Rheology and Thermal Stability of EVA/Organomontmorillonite Nanocomposites
,”
Polym. Polym. Compos.
,
13
(
3
), pp.
271
280
. 10.1177/096739110501300307
30.
Li
,
S. C.
,
Järvelä
,
P. K.
, and
Järvelä
,
P. A.
,
1999
, “
Melt Rheological Properties of Polypropylene–Maleated Polypropylene Blends. I. Steady Flow by Capillary
,”
J. Appl. Polym. Sci.
,
71
(
10
), pp.
1641
1648
. 10.1002/(sici)1097-4628(19990307)71:10<1641::aid-app11>3.0.co;2-a
31.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyp. J.
,
20
(
3
), pp.
192
204
. 10.1108/RPJ-01-2013-0012
You do not currently have access to this content.