Abstract

Anisotropy and omnidirectionality are the two most significant impediments to the growth of additive manufacturing (AM). While anisotropy is a property of the part, omnidirectionality is a characteristic of the machine tool. Omnidirectionality, implying invariance in AM processes with the goal of minimizing variations in material and geometric properties of the as-built parts, is often ignored during systems and process design. Disregard to directional sensitivity, which in some cases are inherent to the process (and/ or system), inadvertently changes the process parameter in-situ consequently, producing parts with non-uniform and often erratic properties. AM, attributing to its sheer number of processing variables, is especially susceptible to this subtle, yet significant system property. While some AM platforms, due to their nature of part production, are inherently omnidirectional, others require additional setup to ensure the same. Having an omnidirectional AM platform ensures that the parts are fabricated with process variables that are equally sensitive in all directions. In most AM systems, given a fixed set of process parameters, the spatial orientation of fusion (or joining) source vector, feedstock-delivery vector, and travel direction vector relative to each other governs omnidirectionality. Inconsistency or change in orientation of these three vectors results in non-uniform part properties and variations in geometric dimensions. Therefore, AM systems have to be omnidirectional to improve part performance and promote industrial acceptance. This paper, through a formal definition of omnidirectionality, analyses these three vectors individually along with their interplay with other process parameters and design variables.

References

1.
Phanm
,
D. T.
, and
Dimov
,
S. S.
,
2001
,
Rapid Manufacturing
,
Springer Verlag
,
London
.
2.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
Heidelberg Dordrecht London
, pp.
1
498
.
3.
Kapil
,
S.
,
Kulkarni
,
P.
,
Joshi
,
P.
,
Negi
,
S.
, and
Karunakaran
,
K. P.
,
2018
, “
Retrofitment of a CNC machine for omni-directional tungsten inert gas cladding
,”
Virtual Phys. Prototyp.
,
14
(
3
), pp.
293
306
. https://doi.org/10.1080/17452759.2018.1552484
4.
Ul Haq Syed
,
Waheed
, and
Li
,
Lin
,
2005
, “
Effects of Wire Feeding Direction and Location in Multiple Layer Diode Laser Direct Metal Deposition
,”
Appl. Surf. Sci.
,
248
(
1–4
), pp.
518
524
. https://doi.org/10.1016/j.apsusc.2005.03.039
5.
Kapil
,
S.
,
Kulkarni
,
P. M.
,
Karunakaran
,
K. P.
, and
Joshi
,
P.
,
2014
, “
Development and Characterization of Functionally Graded Materials Using Hybrid Layered Manufacturing
,”
All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014)
,
IIT Guwahati, Assam, India
,
Dec. 12–14
, pp.
1
6
.
6.
Goodarzi
,
D. M.
,
Pekkarinen
,
J.
, and
Salminen
,
A.
,
2015
, “
Effect of Process Parameters in Laser Cladding on Substrate Melted Areas and the Substrate Melted Shape
,”
J. Laser Appl.
,
27
(
S2
), p.
S29201
. 10.2351/1.4906376
7.
Voice
,
W. E.
,
Jarvis
,
D. J.
, and
Adkins
,
N. J. E.
,
2018
,
Multi-Wire Feeder Method and System for Alloy Sample Formation and Additive Manufacturing, US Patent 9902018
.
8.
Morgan
,
G. E.
, and
Dyer
,
G. E.
,
1990
, “
Electrode Carrying Wire for GTAW Welding
,” (19).
US Patent 4924053
.
9.
Hooper
,
F. M.
,
2002
, “
Plasma Arc Torch with Coaxial Wire Feed
,”
US Patent. 63658657B1
.
10.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Ukar
,
E.
,
López De Lacalle
,
L. N.
,
Angulo
,
C.
, and
Urbikain
,
G.
,
2010
, “
Numerical Simulation and Experimental Validation of Powder Flux Distribution in Coaxial Laser Cladding
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2125
2134
. 10.1016/j.jmatprotec.2010.07.036
11.
Arrizubieta
,
J. L.
,
Tabernero
,
I.
,
Exequiel Ruiz
,
J.
,
Lamikiz
,
A.
,
Martinez
,
S.
, and
Ukar
,
E.
,
2014
, “
Continuous Coaxial Nozzle Design for LMD Based on Numerical Simulation
,”
Phys. Procedia
,
56
(
C
), pp.
429
438
. 10.1016/j.phpro.2014.08.146
12.
de Oliveira
,
U.
,
Ocelík
,
V.
, and
De Hosson
,
J. T. M.
,
2005
, “
Analysis of Coaxial Laser Cladding Processing Conditions
,”
Surf. Coatings Technol.
,
197
(
2–3
), pp.
127
136
. 10.1016/j.surfcoat.2004.06.029
13.
Zekovic
,
S.
,
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2007
, “
Numerical Simulation and Experimental Investigation of Gas–Powder Flow From Radially Symmetrical Nozzles in Laser-Based Direct Metal Deposition
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
112
123
. 10.1016/j.ijmachtools.2006.02.004
14.
Wu
,
J.
,
Zhao
,
P.
,
Wei
,
H.
,
Lin
,
Q.
, and
Zhang
,
Y.
,
2018
, “
Development of Powder Distribution Model of Discontinuous Coaxial Powder Stream in Laser Direct Metal Deposition
,”
Powder Technol.
,
340
, pp.
449
458
. 10.1016/j.powtec.2018.09.032
15.
Tan
,
H.
,
Shang
,
W.
,
Zhang
,
F.
,
Clare
,
A. T.
,
Lin
,
X.
,
Chen
,
J.
, and
Huang
,
W.
,
2018
, “
Process Mechanisms Based on Powder Flow Spatial Distribution in Direct Metal Deposition
,”
J. Mater. Process. Technol.
,
254
, pp.
361
372
10.1016/j.jmatprotec.2017.11.026.
16.
Bobbio
,
L. D.
,
Bocklund
,
B.
,
Otis
,
R.
,
Borgonia
,
J. P.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
McEnerney
,
B.
,
Liu
,
Z. K.
, and
Beese
,
A. M.
,
2018
, “
Characterization of a Functionally Graded Material of Ti-6Al-4V to 304L Stainless Steel With an Intermediate V Section
,”
J. Alloys Compd.
,
742
, pp.
1031
1036
. 10.1016/j.jallcom.2018.01.156
17.
Liu
,
Y.
,
Liu
,
C.
,
Liu
,
W.
,
Ma
,
Y.
,
Zhang
,
C.
,
Cai
,
Q.
, and
Liu
,
B.
,
2018
, “
Microstructure and Properties of Ti/Al Lightweight Graded Material by Direct Laser Deposition
,”
Mater. Sci. Technol.
,
34
(
8
), pp.
945
951
. 10.1080/02670836.2017.1412042
18.
Schneider-Maunoury
,
C.
,
Weiss
,
L.
,
Acquier
,
P.
,
Boisselier
,
D.
, and
Laheurte
,
P.
,
2017
, “
Functionally Graded Ti6Al4V-Mo Alloy Manufactured with DED-CLAD®Process
,”
Addit. Manuf.
,
17
, pp.
55
66
. 10.1016/j.addma.2017.07.008
19.
Mahamood
,
R. M.
, and
Akinlabi
,
E. T.
,
2015
, “
Laser Metal Deposition of Functionally Graded Ti6Al4V/TiC
,”
Mater. Des.
,
84
, pp.
402
410
. 10.1016/j.matdes.2015.06.135
20.
Pütsch
,
O.
,
Stollenwerk
,
J.
,
Kogel-Hollacher
,
M.
, and
Traub
,
M.
,
2012
, “
Annular Beam Shaping System for Advanced 3D Laser Brazing,” Adv
.
Opt. Technol.
,
1
(
5
), pp.
397
402
. 10.1515/aot-2012-0040
21.
Jeromen
,
A.
,
Kuznetsov
,
A.
,
Govekar
,
E.
,
Kondo
,
M.
, and
Kotar
,
M.
,
2018
, “
Annular Laser Beam Based Direct Metal Deposition
,”
10th CIRP Conference on Photonic Technologies
,
Fürth, Germany
,
Sept. 6
.
22.
Pajukoski
,
H.
,
Näkki
,
J.
,
Thieme
,
S.
,
Tuominen
,
J.
,
Nowotny
,
S.
, and
Vuoristo
,
P.
,
2016
, “
High Performance Corrosion Resistant Coatings by Novel Coaxial Cold- and Hot-Wire Laser Cladding Methods
,”
J. Laser Appl.
,
28
(
1
), p.
012011
. 10.2351/1.4936988
23.
Robert
,
G. M.
,
Summit
,
N. J.
,
Ontario
,
N. H.
, and
Donald
,
Y. M.
,
1962
, “
Collimated Electric Arc-Powder Deposition Process
,”
US Patent 3016447
.
24.
Pan
,
H.
,
Sparks
,
T.
,
Thakar
,
Y. D.
, and
Liou
,
F.
,
2006
, “
The Investigation of Gravity-Driven Metal Powder Flow in Coaxial Nozzle for Laser-Aided Direct Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
541
553
. 10.1115/1.2162588
25.
Thayalan
,
V.
, and
Landers
,
R. G.
,
2006
, “
Regulation of Powder Mass Flow Rate in Gravity-Fed Powder Feeder Systems
,”
J. Manuf. Process.
,
8
(
2
), pp.
121
132
. 10.1016/S1526-6125(06)80007-1
26.
Burdovitsin
,
V.
, and
Oks
,
E.
,
1999
, “
Hollow-Cathode Plasma Electron Gun for Beam Generation at Forepump Gas Pressure
,”
Rev. Sci. Instrum.
,
70
(
7
), pp.
2975
2978
. 10.1063/1.1149856
27.
Wirefeed Additive Manufacturing vs. Powder Methods | Sciaky
[Online].
http://www.sciaky.com/additive-manufacturing/wire-am-vs-powder-am, Accessed May 31, 2019.
28.
Perrot
,
A.
,
Rangeard
,
D.
, and
Courteille
,
E.
,
2018
, “
3D Printing of Earth-Based Materials: Processing Aspects
,”
Constr. Build. Mater.
,
172
, pp.
670
676
. 10.1016/j.conbuildmat.2018.04.017
29.
Shakor
,
P.
,
Nejadi
,
S.
, and
Paul
,
G.
,
2019
, “
A Study Into the Effect of Different Nozzles Shapes and Fibre-Reinforcement in 3D Printed Mortar
,”
Materials
,
12
(
10
), p.
1708
. 10.3390/ma12101708
30.
Bos
,
F.
,
Wolfs
,
R.
,
Ahmed
,
Z.
, and
Salet
,
T.
,
2016
, “
Additive Manufacturing of Concrete in Construction: Potentials and Challenges of 3D Concrete Printing
,”
Virtual Phys. Prototyp.
,
11
(
3
), pp.
209
225
. 10.1080/17452759.2016.1209867
31.
Ayoola
,
W. A.
,
Suder
,
W. J.
, and
Williams
,
S. W.
,
2019
, “
Effect of Beam Shape and Spatial Energy Distribution on Weld Bead Geometry in Conduction Welding
,”
Opt. Laser Technol.
,
117
, pp.
280
287
. 10.1016/j.optlastec.2019.04.025
32.
Huang
,
J.
,
Qin
,
Q.
,
Wang
,
J.
, and
Fang
,
H.
,
2018
, “
Two Dimensional Laser Galvanometer Scanning Technology for Additive Manufacturing
,”
Int. J. Mater. Mech. Manuf.
,
6
(
5
), pp.
332
336
. 10.18178/ijmmm.2018.6.5.402
33.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
,
2003
,
Rapid Prototyping
,
World Scientific
,
Singapore
.
34.
Lee
,
M. P.
,
Cooper
,
G. J. T.
,
Hinkley
,
T.
,
Gibson
,
G. M.
,
Padgett
,
M. J.
, and
Cronin
,
L.
,
2015
, “
Development of a 3D Printer Using Scanning Projection Stereolithography
,”
Sci. Rep.
,
5
, pp.
1
5
. 10.1038/srep09875
35.
Liou
,
F. W.
,
2008
,
Rapid Prototyping and Engineering Applications
,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
, pp.
1
533
.
36.
Alharbi
,
N.
,
Osman
,
R.
, and
Wismeijer
,
D.
,
2016
, “
Effects of Build Direction on the Mechanical Properties of 3D-Printed Complete Coverage Interim Dental Restorations
,”
J. Prosthet. Dent.
,
115
(
6
), pp.
760
767
. 10.1016/j.prosdent.2015.12.002
37.
Choi
,
H. W.
, and
Yoon
,
J. Y.
,
2014
, “
Composite Polymer Joining by Laser Combined Hybrid Laser Process
,”
Adv. Mater. Res.
,
875–877
, pp.
1362
1366
. www.scientific.net/AMR.875-877.1362
38.
Matsuda
,
T.
,
Abe
,
F.
, and
Takahashi
,
H.
,
1977
, “
4.4 Laser Printer Scanning System With a Parabollic Mirror
,”
IEEE J. Quantum Electron.
,
13
(
9
), p.
826
. 10.1109/JQE.1977.1069470
39.
Li
,
Y.
, and
Katz
,
J.
,
1997
, “
Asymmetric Distribution of the Scanned Field of a Rotating Reflective Polygon
,”
Appl. Opt.
,
36
(
1
), p.
342
. 10.1364/AO.36.000342
40.
Varughese
,
K. O. G.
, and
Siva Rama Krishna
,
K.
,
1993
, “
Flattening the Field of Postobjective Scanners by Optimum Choice and Positioning of Polygons
,”
Appl. Opt.
,
32
(
7
), pp.
1104
1108
. 10.1364/AO.32.001104
41.
Huang
,
Y. M.
,
Kuriyama
,
S.
, and
Jiang
,
C. P.
,
2004
, “
Fundamental Study and Theoretical Analysis in a Constrained-Surface Stereolithography System
,”
Int. J. Adv. Manuf. Technol.
,
24
(
5–6
), pp.
361
369
. 10.1007/s00170-003-1627-9
42.
Huang
,
Y. M.
, and
Lan
,
H. Y.
,
2006
, “
Path Planning Effect for the Accuracy of Rapid Prototyping System
,”
Int. J. Adv. Manuf. Technol.
,
30
(
3–4
), pp.
233
246
. 10.1007/s00170-005-0085-y
43.
Zhang
,
X.
,
Zhou
,
B.
,
Zeng
,
Y.
, and
Gu
,
P.
,
2002
, “
Model Layout Optimization for Solid Ground Curing Rapid Prototyping Processes
,”
Robot. Comput. Integr. Manuf.
,
18
(
1
), pp.
41
51
. 10.1016/S0736-5845(01)00022-9
44.
Lambert
,
P. M.
,
Campaigne
,
E. A.
, and
Williams
,
C. B.
,
2013
, “
Design Considerations for Mask Projection Microstereolithography Systems
,”
24th International SFF Symposium—An Addittive Manufuring Conference, SFF 2013
,
Austin, TX
, pp.
111
130
.
45.
Bertsch
,
A.
,
Zissi
,
S.
,
Jézéquel
,
J. Y.
,
Corbel
,
S.
, and
André
,
J. C.
,
1997
, “
Microstereophotolithography Using a Liquid Crystal Display as Dynamic Mask-Generator
,”
Microsyst. Technol.
,
3
(
2
), pp.
42
47
. 10.1007/s005420050053
46.
Jacob
,
A.
,
2008
, “
Automating Cutting of Composites
,”
Reinf. Plast.
,
52
(
6
), pp.
20
24
. 10.1016/S0034-3617(08)70211-X
47.
Morita
,
S.
, and
Sugiyam
,
K.
Sheet Lamination Modelling Method
.”
48.
Feygin
,
M.
, and
Hsieh
,
B.
,
1991
, “
Laminated Object Manufacturing: A Simpler Process
,”
Proceedings of the Second Solid Free Fabrication Symposium
,
Austin, TX
, pp.
123
130
.
49.
Tang
,
Y.
,
Loh
,
H. T.
,
Fuh
,
J. Y. H.
,
Wong
,
Y. S.
,
Lu
,
L.
,
Ning
,
Y.
, and
Wang
,
X.
,
2004
, “
Accuracy Analysis and Improvement for Direct Laser Sintering
,” http://hdl.handle.net/1721.1/3898.
50.
Barclift
,
M. W.
, and
Williams
,
C. B.
,
2012
, “
Examining Variability in the Mechanical Properties of Parts Manufactured via Polyjet Direct 3D Printing
,”
International Solid Free Fabrication Symposium
, pp.
876
890
.
51.
Lupoi
,
R.
, and
O’Neill
,
W.
,
2011
, “
Powder Stream Characteristics in Cold Spray Nozzles
,”
Surf. Coatings Technol.
,
206
(
6
), pp.
1069
1076
. 10.1016/j.surfcoat.2011.07.061
52.
Xie
,
Y.
,
Chen
,
C.
,
Planche
,
M. P.
,
Deng
,
S.
, and
Liao
,
H.
,
2018
, “
Effect of Spray Angle on Ni Particle Deposition Behaviour in Cold Spray
,”
Surf. Eng.
,
34
(
5
), pp.
352
360
. 10.1080/02670844.2017.1312221
53.
Bai
,
Y.
,
Wagner
,
G.
, and
Williams
,
C. B.
,
2017
, “
Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081019
. 10.1115/1.4036640
54.
Yun
,
B.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
. 10.1108/rpj-12-2014-0180
55.
Gonzalez
,
J. A.
,
Mireles
,
J.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2016
, “
Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
42
(
9
), pp.
10559
10564
. 10.1016/j.ceramint.2016.03.079
56.
Zhong
,
C.
,
Pirch
,
N.
,
Gasser
,
A.
,
Poprawe
,
R.
, and
Schleifenbaum
,
J. H.
,
2017
, “
The Influence of the Powder Stream on High-Deposition-Rate Laser Metal Deposition with Inconel 718
,”
Metals
,
7
(
10
), p.
443
. 10.3390/met7100443
57.
Kuznetsov
,
A.
,
Jeromen
,
A.
,
Levy
,
G.
,
Fujishima
,
M.
, and
Govekar
,
E.
,
2016
, “
Annular Laser Beam Cladding Process Feasibility Study
,”
Phys. Procedia
,
83
, pp.
647
656
. 10.1016/j.phpro.2016.08.067
58.
Haley
,
J. C.
,
Zheng
,
B.
,
Bertoli
,
U. S.
,
Dupuy
,
A. D.
,
Schoenung
,
J. M.
, and
Lavernia
,
E. J.
,
2019
, “
Working Distance Passive Stability in Laser Directed Energy Deposition Additive Manufacturing
,”
Mater. Des.
,
161
, pp.
86
94
. 10.1016/j.matdes.2018.11.021
59.
Kledwig
,
C.
,
Perfahl
,
H.
,
Reisacher
,
M.
,
Brückner
,
F.
,
Bliedtner
,
J.
, and
Leyens
,
C.
,
2019
, “
Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System During Directed Energy Deposition in Additive Manufacturing
,”
Materials
,
12
(
2
), p.
308
. 10.3390/ma12020308
60.
Arrizubieta
,
J. I.
,
Ruiz
,
J. E.
,
Martinez
,
S.
,
Ukar
,
E.
, and
Lamikiz
,
A.
,
2017
, “
Intelligent Nozzle Design for the Laser Metal Deposition Process in the Industry 4.0
,”
Procedia Manuf.
,
13
, pp.
1237
1244
. 10.1016/j.promfg.2017.09.043
61.
Liu
,
C.
,
Law
,
A. C. C.
,
Roberson
,
D.
, and
Kong
,
Z.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing with Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
. 10.1016/j.jmsy.2019.04.002
62.
Arrizubieta
,
J. I.
,
Martínez
,
S.
,
Lamikiz
,
A.
,
Ukar
,
E.
,
Arntz
,
K.
, and
Klocke
,
F.
,
2017
, “
Instantaneous Powder Flux Regulation System for Laser Metal Deposition
,”
J. Manuf. Process.
,
29
, pp.
242
251
. 10.1016/j.jmapro.2017.07.018
63.
Comminal
,
R.
,
Serdeczny
,
M. P.
,
Pedersen
,
D. B.
, and
Spangenberg
,
J.
,
2018
, “
Numerical Modeling of the Material Deposition and Contouring Precision in Fused Deposition Modelling
,”
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
University of Texas at Austin, Austin, TX
, pp.
1855
1864
.
64.
Stereolithography (SLA) 3D Printing Overview 3D Systems
[Online]. Available
: https://www.3dsystems.com/resources/information-guides/stereolithography/sla, Accessed April 21, 2020.
65.
“Perfactory P4K Series | EnvisionTEC,” https://envisiontec.com/3d-printers/perfactory-family/perfactory-p4k-series/, Accessed November 21, 2020.
66.
Brothers In Arms: These Robots Put A New Twist On 3D Printing—GE Reports
” [Online]. Available: https://www.ge.com/reports/brothers-arms-robots-put-new-twist-3d-printing/, Accessed April 21, 2020.
67.
Stereolithography vs. PolyJet | Top 4 Differences | Stratasys Direct
” [Online]. Available: https://www.stratasysdirect.com/manufacturing-services/3d-printing/differences-between-stereolithography-polyjet, Accessed April 21, 2020.
68.
HP 3D Metal Jet—Commercial & Industrial Metal 3D Printer | HP® Official Site
” [Online]. Available: https://www8.hp.com/us/en/printers/3d-printers/products/metal-jet.html, Accessed April 21, 2020.
69.
Product Center-Yingchuang Building Technique (Shanghai) Co.Ltd. (WinSun)
” [Online]. Available: http://www.winsun3d.com/En/Product/pro_inner/id/1, Accessed April 21, 2020.
70.
“Metal 3D Printing,” https://www.renishaw.com/en/metal-3d-printing--32084, Accessed November 21, 2020.
71.
“How Does Additive Manufacturing Work?,” https://www.eos.info/en/industrial-3d-printing/additive-manufacturing-how-it-works, Accessed November 21, 2020.
72.
DMG MORI
” [Online]. Available: https://www.dmgmori.co.jp/en/top2/, Accessed April 21, 2020.
73.
Systems—Additec Website
” [Online]. Available: https://www.additec.net/Systems/, Accessed April 21, 2020.
74.
3DMP Process
” [Online]. Available: https://www.gefertec.de/en/3dmp-process/, Accessed April 21, 2020.
You do not currently have access to this content.