Abstract

To guarantee the final assembly quality of the large-scale components, the assembly interfaces of large components need to be finish-machined on site. Such assembly interfaces are often in low-stiffness structure and made of difficult-to-cut materials, which makes it hard to fulfill machining tolerance. To solve this issue, a data-driven adaptive machining error analysis and compensation method is proposed based on on-machine measurement. Within this context, an initial definite plane is fitted via an improved robust iterating least-squares plane-fitting method based on the spatial statistical analysis result of machining errors of the key measurement points. Then, the parameters of the definite plane are solved by a simulated annealing-particle swarm optimization (SA-PSO) algorithm to determine the optimal definite plane; it effectively decomposes the machining error into systematic error and process error. To reduce these errors, compensation methods, tool-path adjustment method, and an optimized group of cutting parameters are proposed. The proposed method is validated by a set of cutting tests of an assembly interface of a large-scale aircraft vertical tail. The results indicate that the machining errors are successfully separated, and each type of error has been reduced by the proposed method. A 0.017 mm machining accuracy of the wall-thickness of the assembly interface has been achieved, well fulfilling the requirement of 0.05 mm tolerance.

References

1.
Fan
,
W.
,
Zheng
,
L.
,
Ji
,
W.
,
Zhao
,
X.
,
Wang
,
L.
, and
Yang
,
Y.
,
2019
, “
Eddy Current-Based Vibration Suppression for Finish Machining of Assembly Interfaces of Large Aircraft Vertical Tail
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071012
. 10.1115/1.4043733
2.
Fan
,
W.
,
Zheng
,
L.
,
Ji
,
W.
,
Xu
,
X.
,
Wang
,
L.
,
Lu
,
Y.
, and
Zhao
,
X.
,
2020
, “
Function Block-Based Closed-Loop Adaptive Machining for Assembly Interfaces of Large-Scale Aircraft Components
,”
Robot. Comput. Integr. Manuf.
,
66
, p.
101994
. 10.1016/j.rcim.2020.101994
3.
Fan
,
W.
,
Zheng
,
L.
,
Ji
,
W.
,
Xu
,
X.
,
Lu
,
Y.
, and
Wang
,
L.
,
2020
, “
A Machining Accuracy Informed Adaptive Positioning Method for Finish Machining of Assembly Interfaces of Large-Scale Aircraft Components
,”
Robot. Comput. Integr. Manuf.
,
67
, p.
102021
. 10.1016/j.rcim.2020.102021
4.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
5.
Ratchev
,
S.
,
Liu
,
S.
, and
Becker
,
A. A.
,
2005
, “
Error Compensation Strategy in Milling Flexible Thin-Wall Parts
,”
J. Mater. Process. Technol.
,
162
, pp.
673
681
. 10.1016/j.jmatprotec.2005.02.192
6.
Wan
,
M.
,
Gao
,
T. Q.
,
Feng
,
J.
, and
Zhang
,
W. H.
,
2019
, “
On Improving Chatter Stability of Thin-Wall Milling by Prestressing
,”
J. Mater. Process. Technol.
,
264
, pp.
32
44
. 10.1016/j.jmatprotec.2018.08.042
7.
Yue
,
C.
,
Gao
,
H.
,
Liu
,
X.
,
Liang
,
S.
, and
Wang
,
L.
,
2019
, “
A Review of Chatter Vibration Research in Milling
,”
Chin. J. Aeronaut.
,
32
(
2
), pp.
215
242
. 10.1016/j.cja.2018.11.007
8.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
. 10.1115/1.4047432
9.
Mittal
,
R.
,
Maheshwari
,
C.
,
Kulkarni
,
S. S.
, and
Singh
,
R.
,
2019
, “
Effect of Progressive Tool Wear on the Evolution of the Dynamic Stability Limits in High-Speed Micromilling of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111006
. 10.1115/1.4044713
10.
Karandikar
,
J. M.
,
Schmitz
,
T. L.
, and
Abbas
,
A. E.
,
2014
, “
Application of Bayesian Inference to Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021017
. 10.1115/1.4026365
11.
Yu
,
J.
, and
Wang
,
Y.
,
2019
, “
Research Status of Machining Deformation in Aeronautical Thin-Walled Parts
,”
Mech. Eng. Technol.
,
8
(
05
), p.
401
. 10.12677/MET.2019.85046
12.
Stryczek
,
2016
, “
A Metaheuristic for Fast Machining Error Compensation
,”
J. Intell. Manuf.
,
27
(
6
), pp.
1209
1220
. 10.1007/s10845-014-0945-0
13.
Yu
,
J.
,
Chen
,
Z.
, and
Jiang
,
Z.
,
2016
, “
An Approach for Machining Distortion Measurements and Evaluation of Thin-Walled Blades With Small Datum
,”
Chin. J. Aeronaut.
,
29
(
6
), pp.
1806
1814
. 10.1016/j.cja.2016.05.004
14.
Ma
,
W.
,
Yang
,
Y.
, and
Yu
,
J.
,
2019
, “
General Routine of Suppressing Single Vibration Mode by Multi-DOF Tuned Mass Damper: Application of Three-DOF
,”
Mech. Syst. Signal Process.
,
121
, pp.
77
96
. 10.1016/j.ymssp.2018.11.010
15.
Gu
,
J.
,
Agapiou
,
J. S.
, and
Kurgin
,
S.
,
2017
, “
Error Compensation and Accuracy Improvements in 5-Axis Machine Tools Using the Global Offset Method
,”
J. Manuf. Syst.
,
44
, pp.
324
331
. 10.1016/j.jmsy.2017.04.015
16.
Wen
,
H.
,
Wang
,
L.
,
Yin
,
G.
,
Zhu
,
D.
, and
Lv
,
T.
,
2019
, “
Parametric Design of Modular Fixture System of Zero Point Positioning for CNC Machine Tool
,”
Machinery
,
46
(
1
), pp.
32
35, 48
. 10.3969/j.issn.1006-0316.2019.01.007
17.
Tong
,
X.
,
Liu
,
Q.
,
Pi
,
S.
, and
Xiao
,
Y.
,
2019
, “
Real-Time Machining Data Application and Service Based on IMT Digital Twin
,”
J. Intell. Manuf.
, pp.
1
20
.
18.
Wang
,
X.
,
Li
,
Z.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Ding
,
H.
,
2019
, “
An Accelerated Convergence Approach for Real-Time Deformation Compensation in Large Thin-Walled Parts Machining
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
98
106
. 10.1016/j.ijmachtools.2018.12.004
19.
Wang
,
J.
,
Pan
,
L.
,
Bian
,
Y.
, and
Lu
,
Y.
,
2020
, “
Experimental Investigation of the Surface Roughness of Finish-Machined High-Volume-Fraction SiCp/Al Composites
,”
Arabian J. Sci. Eng.
,
45
(
7
), pp.
5399
5406
. 10.1007/s13369-020-04421-w
20.
Zhao
,
Y. F.
, and
Xu
,
X.
,
2010
, “
Enabling Cognitive Manufacturing Through Automated on-Machine Measurement Planning and Feedback
,”
Adv. Eng. Inform.
,
24
(
3
), pp.
269
284
. 10.1016/j.aei.2010.05.009
21.
Zhao
,
F.
,
Xu
,
X.
, and
Xie
,
S.
,
2008
, “
STEP-NC Enabled on-Line Inspection in Support of Closed-Loop Machining
,”
Robot. Comput. Integr. Manuf.
,
24
(
2
), pp.
200
216
. 10.1016/j.rcim.2006.10.004
22.
Huang
,
N.
,
Bi
,
Q.
,
Wang
,
Y.
, and
Sun
,
C.
,
2014
, “
5-Axis Adaptive Flank Milling of Flexible Thin-Walled Parts Based on the On-Machine Measurement
,”
Int. J. Mach. Tools Manuf.
,
84
, pp.
1
8
. 10.1016/j.ijmachtools.2014.04.004
23.
Liu
,
H. B.
,
Wang
,
Y. Q.
,
Jia
,
Z. Y.
, and
Guo
,
D. M.
,
2015
, “
Integration Strategy of On-Machine Measurement (OMM) and Numerical Control (NC) Machining for the Large Thin-Walled Parts With Surface Correlative Constraint
,”
Int. J. Adv. Manuf. Technol.
,
80
(
9–12
), pp.
1721
1731
. 10.1007/s00170-015-7046-x
24.
Wang
,
G.
,
Li
,
W. L.
,
Tong
,
G.
, and
Pang
,
C. T.
,
2017
, “
Improving the Machining Accuracy of Thin-Walled Parts by Online Measuring and Allowance Compensation
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2755
2763
. 10.1007/s00170-017-0358-2
25.
Wang
,
G.
,
Yang
,
X.
, and
Wang
,
Z.
,
2018
, “
On-line Deformation Monitoring of Thin-Walled Parts Based on Least Square Fitting Method and Lifting Wavelet Transform
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
4237
4246
. 10.1007/s00170-017-1145-9
26.
Ma
,
W.
,
He
,
G.
,
Han
,
J.
, and
Xie
,
Q.
,
2020
, “
Error Compensation for Machining of Sculptured Surface Based on On-Machine Measurement and Model Reconstruction
,”
Int. J. Adv. Manuf. Technol.
,
106
(
7–8
), pp.
3177
3187
. 10.1007/s00170-019-04862-0
27.
Gu
,
J.
,
Agapiou
,
J. S.
, and
Kurgin
,
S.
,
2015
, “
CNC Machine Tool Work Offset Error Compensation Method
,”
J. Manuf. Syst.
,
37
, pp.
576
585
. 10.1016/j.jmsy.2015.04.001
28.
Gu
,
J.
, and
Agapiou
,
J. S.
,
2018
, “
Assessment and Implementation of Global Offset Compensation Method
,”
J. Manuf. Syst.
,
48
, pp.
38
44
. 10.1016/j.jmsy.2018.04.013
29.
Lei
,
P.
, and
Zheng
,
L.
,
2017
, “
An Automated In-Situ Alignment Approach for Finish Machining Assembly Interfaces of Large-Scale Components
,”
Robot. Comput. Integr. Manuf.
,
46
, pp.
130
143
. 10.1016/j.rcim.2017.01.004
30.
Bi
,
Q.
,
Wang
,
X.
,
Wu
,
Q.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Fv-SVM-Based Wall-Thickness Error Decomposition for Adaptive Machining of Large Skin Parts
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2426
2434
. 10.1109/TII.2018.2879500
31.
Bohórquez
,
L.
,
Gómez
,
I.
, and
Santa
,
F.
,
2011
, “
Methodology for the Discrimination of Areas Affected by Forest Fires Using Satellite Images and Spatial Statistics
,”
Proc. Environ. Sci.
,
7
, pp.
389
394
. 10.1016/j.proenv.2011.07.067
32.
Chen
,
Y.
,
Gao
,
J.
,
Deng
,
H.
,
Zheng
,
D.
,
Chen
,
X.
, and
Kelly
,
R.
,
2013
, “
Spatial Statistical Analysis and Compensation of Machining Errors for Complex Surfaces
,”
Precis. Eng.
,
37
(
1
), pp.
203
212
. 10.1016/j.precisioneng.2012.08.003
33.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1993
, “
Compensation for Form Error of End-Milled Sculptured Surfaces Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
,
33
(
5
), pp.
725
740
. 10.1016/0890-6955(93)90103-2
34.
Wang
,
F.
,
Qiu
,
G.
, and
Cheng
,
X.
,
2011
, “
An Improved Robust Method for Iterating Least-Squares Plane Fitting
,”
J. Tongji Med. Univ.
,
39
(
9
), pp.
1350
1354
.
35.
Cheng
,
Y.
,
Bai
,
F.
,
Liu
,
C.
, and
Peng
,
M.
,
2016
, “
Analyzing Nonlinear Large Deformation With an Improved Element-Free Galerkin Method Via the Interpolating Moving Least-Squares Method
,”
Int. J. Comput. Mater. Sci. Eng.
,
5
(
04
), p.
1650023
. 10.1142/S2047684116500238
36.
Tao
,
M.
,
Huang
,
S.
,
Li
,
Y.
,
Yan
,
M.
, and
Zhou
,
Y.
,
2015
, “
SA-PSO Based Optimizing Reader Deployment in Large-Scale RFID Systems
,”
J. Netw. Comput. Appl.
,
52
, pp.
90
100
. 10.1016/j.jnca.2015.02.011
37.
Wei
,
Z. C.
,
Wang
,
M. J.
,
Cai
,
Y. J.
,
Zhu
,
J. N.
, and
Wang
,
L.
,
2013
, “
Form Error Estimation in Ball-End Milling of Sculptured Surface With z-Level Contouring Tool Path
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
363
369
. 10.1007/s00170-012-4175-3
38.
Zhou
,
J.
,
Chen
,
W. F.
, and
Qu
,
S. P.
,
2010
, “
Active Error Compensation Methods for Numerical Control Machining
,”
Comput. Integr. Manuf. Syst.
,
16
(
9
), pp.
1902
1907
. 10.13196/j.cims.2010.09.112.zhouj.021
39.
Kolluru
,
K.
, and
Axinte
,
D.
,
2014
, “
Novel Ancillary Device for Minimising Machining Vibrations in Thin Wall Assemblies
,”
Int. J. Mach. Tools Manuf.
,
85
, pp.
79
86
. 10.1016/j.ijmachtools.2014.05.007
40.
Zhao
,
X.
,
Fan
,
W.
,
Zheng
,
L.
,
Liu
,
X.
,
An
,
Z.
, and
Yang
,
S.
,
2019
, “
Modal Parameter Identification of Finishing Assembly Interface of Vertical Tail Section of Large Aircraft Based on Optimized STD Method
,”
Acta Aeronaut. Astronaut. Sin.
,
40
(
10
), p.
422950
.
You do not currently have access to this content.