Abstract

The manufacturing of miniaturized components is indispensable in modern industries, where the uncut chip thickness (UCT) inevitably falls into a comparable magnitude with the tool edge radius. Under such circumstances, the ploughing phenomenon between workpiece and tool becomes predominant, followed by the notable formation of dead metal zone (DMZ) and piled-up chip. Although extensive models have been developed, the critical material flow status in such microscale is still confusing and controversial. In this study, a novel material separation model is proposed for the demonstration of workpiece flow mechanism around the tool edge radius. First, four critical positions of workpiece material separation are determined, including three points characterizing the DMZ pattern and one inside considered as stagnation point. The normal and shear stresses as well as friction factors along the entire contact region are clarified based on slip-line theory. It is found that the friction coefficient varies symmetrically about the stagnation point inside DMZ and remains constant for the rest. Then, an analytical force prediction model is developed with Johnson–Cook constitutive model, involving calibrated functions of chip-tool contact length and cutting temperature. The assumed tribology condition and morphologies of material separation including DMZ are clearly observed and verified through various finite element (FE) simulations. Finally, comparisons of cutting forces from cutting experiments and predicted results are adopted for the validation of the predictive model.

References

1.
Dogra
,
M.
,
Sharma
,
V.
, and
Dureja
,
J.
,
2011
, “
Effect of Tool Geometry Variation on Finish Turning-A Review
,”
J. Eng. Sci. Technol. Rev.
,
4
(
1
), pp.
1
13
. 10.25103/jestr.041.01
2.
Arif
,
R.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Marcon
,
B.
,
2020
, “
Investigations on Strain Hardening During Cutting of Heat-Resistant Austenitic Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051005
. 10.1115/1.4046612
3.
Li
,
B.
,
Zhang
,
S.
,
Yan
,
Z.
, and
Zhang
,
J.
,
2018
, “
Effect of Edge Hone Radius on Chip Formation and Its Microstructural Characterization in Hard Milling of AISI H13 Steel
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1
), pp.
305
318
. 10.1007/s00170-018-1933-x
4.
Weng
,
J.
,
Zhuang
,
K. J.
,
Zhu
,
D. H.
,
Guo
,
S. S.
, and
Ding
,
H.
,
2018
, “
An Analytical Model for the Prediction of Force Distribution of Round Insert Considering Edge Effect and Size Effect
,”
Int. J. Mech. Sci.
,
138
, pp.
86
98
. 10.1016/j.ijmecsci.2018.01.024
5.
Zhuang
,
K. J.
,
Weng
,
J.
,
Zhu
,
D. H.
, and
Ding
,
H.
,
2018
, “
Analytical Modeling and Experimental Validation of Cutting Forces Considering Edge Effects and Size Effects With Round Chamfered Ceramic Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081012
. 10.1115/1.4040087
6.
Agmell
,
M.
,
Johansson
,
D.
,
Laakso
,
S. V. A.
,
Ahadi
,
A.
, and
Stahl
,
J.
,
2017
, “
The Influence the Uncut Chip Thickness Has on the Stagnation Point in Orthogonal Cutting
,”
16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO)
,
Cluny, France
.
7.
Abdelmoneim
,
M. E.
, and
Scrutton
,
R. F.
,
1974
, “
Tool Edge Roundness and Stable Build-Up Formation in Finish Machining
,”
J. Eng. Ind.
,
96
(
4
), pp.
1258
1267
. 10.1115/1.3438504
8.
Basuray
,
P. K.
,
Misra
,
B. K.
, and
Lal
,
G. K.
,
1977
, “
Transition From Ploughing to Cutting During Machining With Blunt Tools
,”
Wear
,
43
(
3
), pp.
341
349
. 10.1016/0043-1648(77)90130-2
9.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
. 10.1115/1.2830208
10.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
. 10.1016/S0022-5096(02)00060-1
11.
Zhang
,
T.
,
Liu
,
Z. Q.
,
Shi
,
Z. Y.
, and
Xu
,
C. H.
,
2017
, “
Investigation on Size Effect of Specific Cutting Energy in Mechanical Micro-Cutting
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2621
2633
. 10.1007/s00170-016-9934-0
12.
Wan
,
M.
,
Wen
,
D. Y.
,
Ma
,
Y. C.
, and
Zhang
,
W. H.
,
2019
, “
On Material Separation and Cutting Force Prediction in Micro Milling Through Involving the Effect of Dead Metal Zone
,”
Int. J. Mach. Tools. Manuf.
,
146
, p.
103452
. 10.1016/j.ijmachtools.2019.103452
13.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
1999
, “
A New Model and Analysis of Orthogonal Machining With an Edge-Radiused Tool
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
384
390
. 10.1115/1.1285886
14.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2005
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
. 10.1115/1.2162905
15.
Lai
,
X. M.
,
Li
,
H. T.
,
Li
,
C. F.
,
Lin
,
Z. Q.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
. 10.1016/j.ijmachtools.2007.08.011
16.
Hanson
,
C.
,
Hiwase
,
P.
,
Chen
,
X.
,
Jahan
,
M. P.
,
Ma
,
J.
, and
Arbuckle
,
G.
,
2019
, “
Experimental Investigation and Numerical Simulation of Burr Formation in Micro-Milling of Polycarbonates
,”
47th SME North American Manufacturing Research Conference (NAMRC)
,
Penn University, Behrend Coll, Erie, PA
.
17.
Malekian
,
M.
,
Mostofa
,
M. G.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
. 10.1016/j.jmatprotec.2011.05.022
18.
Fluhrer
,
J.
,
2004
,
DEFORM-3D Version 5.0 User's Manual
,
Scient. Form. Technol. Corp.
,
Columbus, OH
.
19.
Son
,
S. M.
,
Lim
,
H. S.
, and
Ahn
,
J. H.
,
2004
, “
Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting
,”
Int. J. Mach. Tools Manuf.
,
45
(
4
), pp.
529
535
. https://doi.org/10.1016/j.ijmachtools.2004.09.001
20.
Fang
,
N.
, and
Fang
,
G.
,
2007
, “
Theoretical and Experimental Investigations of Finish Machining With a Rounded Edge Tool
,”
J. Mater. Process. Technol.
,
191
(
1
), pp.
331
334
. 10.1016/j.jmatprotec.2007.03.060
21.
Jin
,
X. L.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
. 10.1016/j.jmatprotec.2010.10.006
22.
Woon
,
K. S.
,
Rahman
,
M.
,
Neo
,
K. S.
, and
Liu
,
K.
,
2008
, “
The Effect of Tool Edge Radius on the Contact Phenomenon of Tool-Based Micromachining
,”
Int. J. Mach. Tools Manuf.
,
48
(
12
), pp.
1395
1407
. 10.1016/j.ijmachtools.2008.05.001
23.
Weng
,
J.
,
Zhuang
,
K.
,
Hu
,
C.
, and
Ding
,
H.
,
2020
, “
A PSO-Based Semi-Analytical Force Prediction Model for Chamfered Carbide Tools Considering Different Material Flow State Caused by Edge Geometry
,”
Int. J. Mech. Sci.
,
169
, p.
105329
. 10.1016/j.ijmecsci.2019.105329
24.
Hu
,
C.
,
Zhuang
,
K. J.
,
Weng
,
J.
, and
Pu
,
D. L.
,
2019
, “
Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition
,”
Int. J. Mech. Sci.
,
155
, pp.
536
553
. 10.1016/j.ijmecsci.2019.03.019
25.
Zhou
,
F. J.
,
2014
,
Research on Machined Surface Characteristics of 304 Stainless Steel (in Chinese), Ph.D Dissertation, Huazhong University of Science and Technology
.
26.
Ren
,
H. K.
, and
Altintas
,
Y.
,
2000
, “
Mechanics of Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
650
659
. 10.1115/1.1286368
27.
Oxley
,
P. L. B.
, and
Hastings
,
W. F.
,
1977
, “
Predicting the Strain Rate in the Zone of Intense Shear in Which the Chip is Formed in Machining From the Dynamic Flow Stress Properties of the Work Material and the Cutting Conditions
,”
Proc. R. Soc. London, Ser. A
,
356
(
1686
), pp.
395
410
. 10.1098/rspa.1977.0141
28.
Klocke
,
F.
,
Lung
,
D.
, and
Buchkremer
,
S.
,
2013
, “
Inverse Identification of the Constitutive Equation of Inconel 718 and AISI 1045 From FE Machining Simulations
,”
14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO)
,
Torino, Italy
.
29.
Puls
,
H.
,
Klocke
,
F.
, and
Lung
,
D.
,
2012
, “
A New Experimental Methodology to Analyse the Friction Behaviour at the Tool-Chip Interface in Metal Cutting
,”
Prod. Eng.
,
6
(
4–5
), pp.
349
354
. 10.1007/s11740-012-0386-6
30.
Zhang
,
D.
,
Zhang
,
X. M.
,
Xu
,
W. J.
, and
Ding
,
H.
,
2017
, “
Stress Field Analysis in Orthogonal Cutting Process Using Digital Image Correlation Technique
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031001
. 10.1115/1.4033928
31.
Bassett
,
E.
,
Köhler
,
J.
, and
Denkena
,
B.
,
2012
, “
On the Honed Cutting Edge and Its Side Effects During Orthogonal Turning Operations of AISI1045 With Coated WC-Co Inserts
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
2
), pp.
108
126
. 10.1016/j.cirpj.2012.03.004
32.
Hu
,
C.
,
Zhuang
,
K.
,
Weng
,
J.
,
Zhang
,
X.
, and
Ding
,
H.
,
2020
, “
Cutting Temperature Prediction in Negative-Rake-Angle Machining With Chamfered Insert Based on a Modified Slip-Line Field Model
,”
Int. J. Mech. Sci.
,
167
, p.
105273
. 10.1016/j.ijmecsci.2019.105273
You do not currently have access to this content.