In industrial production, the roller trace design is still based on the trial-and-error method that is more like an art than science. In this paper, we establish the mathematical model of the involute curve roller trace and adopted the forming clearance compensation in the attaching-mandrel process. The backward pass roller trace is optimized to avoid the roller interference due to blank springback. The spinning simulation model of seven forming passes is set up and verified by the experiments with superalloy GH3030. The wall thickness, the strain distribution, and the tool forces are analyzed. The results show that the forming clearance compensation can greatly shorten the forming time and enhance the production efficiency and saving energy. The metal accumulates at the edge of the blank, and the maximum thinning zone appeared near the edge and is prone to crack. In the straightening pass, the tool forces of both the roller and the mandrel are larger than those in the other passes.

References

1.
Wong
,
C. C.
,
Dean
,
T. A.
, and
Lin
,
J.
,
2003
, “
A Review of Spinning, Shear Forming and Flow Forming Processes
,”
Int. J. Mach. Tool. Manuf.
,
43
(
14
), pp.
1419
1435
.
2.
Music
,
O.
,
Allwood
,
J. M.
, and
Kawai
,
K.
,
2010
, “
A Review of the Mechanics of Metal Spinning
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
3
23
.
3.
Quigley
,
E.
, and
Monaghan
,
J.
,
2000
, “
Metal Forming: An Analysis of Spinning Processes
,”
J. Mater. Process. Technol.
,
103
(
1
), pp.
114
119
.
4.
Xia
,
Q. X.
,
Xiao
,
G. F.
,
Long
,
H.
,
Cheng
,
X. Q.
, and
Sheng
,
X. F.
,
2014
, “
A Review of Process Advancement of Novel Metal Spinning
,”
Int. J. Mach. Tool. Manuf.
,
85
, pp.
100
121
.
5.
Hayama
,
M.
,
Kudo
,
H.
, and
Shinokura
,
T.
,
1970
, “
Study of the Pass Schedule in Conventional Simple Spinning
,”
Bull. JSME
,
13
(
65
), pp.
1358
1365
.
6.
Kawai
,
K. I.
, and
Hayama
,
M.
,
1987
, “
Roller Pass Programming in Conventional Spinning by N.C. Spinning Machine
,”
Adv. Technol. Plast.
,
27
(
308
), pp.
1053
1059
.
7.
Hayama
,
M.
,
1989
, “
Roller Pass Programming and Selection of Working Conditions in Conventional Spinning
,”
J. Jpn. Soc. Technol. Plast.
,
30
(
345
), pp.
1403
1410
.
8.
Kang
,
D. C.
,
Gao
,
X. C.
,
Meng
,
X. F.
, and
Wang
,
Z. H.
,
1999
, “
Study on the Deformation Mode of Conventional Spinning of Plates
,”
J. Mater. Process. Technol.
,
91
(
1–3
), pp.
226
230
.
9.
Liu
,
J. H.
,
Yang
,
H.
, and
Li
,
Y. Q.
,
2002
, “
A Study of the Stress and Strain Distributions of First-Pass Conventional Spinning Under Different Roller Traces
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
326
329
.
10.
James
,
A. P.
, and
Julian
,
M. A.
,
2015
, “
Parametric Toolpath Design in Metal Spinning
,”
CIRP Ann.- Manuf. Technol.
,
64
(
1
), pp.
301
304
.
11.
Li
,
Y.
,
Wang
,
J.
,
Lu
,
G. D.
, and
Pan
,
G. J.
,
2014
, “
A Numerical Study of the Effects of Roller Paths on Dimensional Precision in Die-Less Spinning of Sheet Metal
,”
J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
15
(
6
), pp.
432
446
.
12.
Gan
,
T.
,
Kong
,
Q.
,
Yu
,
Z.
,
Zhao
,
Y.
, and
Lai
,
X.
,
2016
, “
A Numerical Study of Multi-Pass Design Based on Bezier Curve in Conventional Spinning of Spherical Components
,”
MATEC Web Conf.
,
80
, p.
15012
.
13.
Gan
,
T.
,
Yu
,
Z.
,
Zhao
,
Y.
,
Evsyukov
,
S. A.
, and
Lai
,
X.
,
2018
, “
Effects of Backward Path Parameters on Formability in Conventional Spinning of Aluminum Hemispherical Parts
,”
Trans. Nonferrous Met. Soc. China
,
28
(
2
), pp.
328
339
.
14.
Filip
,
A. C.
, and
Neagoe
,
I.
,
2010
, “
Simulation of the Metal Spinning Process by Multi-Pass Path using AutoCAD/VisualLISP
,”
Proceedings of the 3rd WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology
,
Corfu Island, Greece
,
July 22–24
, pp.
161
165
.
15.
Mohamed
,
A. A.
,
Mahmoud
,
A.
, and
Mohamed
,
Y.
,
2018
, “
Experimental Investigation on the Geometrical Accuracy of the CNC Multi-Pass Sheet Metal Spinning Process
,”
J. Manuf. Mater. Process.
,
2
(
3
),
59
.
16.
Wang
,
L.
, and
Long
,
H.
,
2013
, “
Roller Path Design by Tool Compensation in Multi-Pass Conventional Spinning
,”
Mater. Des.
,
46
, pp.
645
653
.
17.
Wang
,
L.
, and
Long
,
H.
,
2011
, “
A Study of Effects of Roller Path Profiles on Tool Forces and Part Wall Thickness Variation in Conventional Metal Spinning
,”
J. Mater. Process. Technol.
,
211
(
12
), pp.
2140
2151
.
18.
Chen
,
J.
,
Wan
,
M.
,
Li
,
W. D.
,
Xu
,
C. X.
,
Xu
,
X. D.
, and
Huang
,
Z. B.
,
2008
, “
Design of the Involute Trace of Multi-Pass Conventional Spinning and Application in Numerical Simulation
,”
J. Plast. Eng.
,
15
(
6
), pp.
53
57
. (in Chinese).
19.
Su
,
P.
, and
Wei
,
Z. C.
,
2014
, “
Roller Trace Design and Impact on Outcome of Spin Forming Molding
,”
Ordnance Ind. Autom.
,
33
(
8
), pp.
31
38
(in Chinese).
20.
Wei
,
Z.
,
Li
,
W.
,
Wan
,
M.
,
Xu
,
C.
,
Huang
,
Z.
, and
Liu
,
J.
,
2010
, “
Influence of Roller-Trace on Multi-Pass Conventional Spinning Process
,”
J. Plast. Eng.
,
17
(
3
), pp.
108
112
(in Chinese).
21.
Pan
,
G.
,
Li
,
Y.
,
Wang
,
J.
, and
Lu
,
G.
,
2015
, “
Review of Conventional Spinning Process and its Roller Path Design Development
,”
J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
49
(
4
), pp.
644
653
.
22.
Liu
,
J. H.
, and
Yang
,
H.
,
2003
, “
Development of Multi-Process Conventional Spinning and Research on Roller-Trace
,”
Mech. Sci. Technol.
,
22
(
5
), pp.
805
807
(in Chinese).
23.
Du
,
J. H.
,
Lu
,
X. D.
,
Deng
,
Q.
, and
Bi
,
Z. N.
,
2015
, “
Progress in the Research and Manufacture of GH4169 Alloy
,”
J. Iron Steel Res. Int.
,
22
(
8
), pp.
657
663
.
24.
Kalpakcioglu
,
S.
,
1961
, “
On the Mechanics of Shear Spinning
,”
ASME J. Eng. Ind.
,
83
(
2
), pp.
125
130
.
25.
Kobayashi
,
S.
,
1963
, “
Instability in Conventional Spinning of Cones
,”
ASME J. Eng. Ind.
,
85
(
1
), pp.
44
48
.
26.
Sortais
,
H. C.
,
Kobayashi
,
S.
, and
Thomsen
,
E. G.
,
1963
, “
Mechanics of Conventional Spinning
,”
ASME J. Eng. Ind.
,
85
(
4
), pp.
346
350
.
27.
Hayama
,
M.
, and
Murota
,
T.
,
1963
, “
Study of Metal Spinning (1st Report)-Cylindrical Shapes
,”
Precis. Mach.
,
29
(
5
), pp.
369
376
(in Japanese).
28.
Hayama
,
M.
, and
Murota
,
T.
,
1963
, “
Study of Metal Spinning (2nd Report)-Analysis of Conventional Simple Spinning I
,”
Precis. Mach.
,
29
(
6
), pp.
427
435
(in Japanese).
29.
Hayama
,
M.
, and
Murota
,
T.
,
1963
, “
Study of Metal Spinning (3rd Report)-Analysis of Conventional Simple Spinning II
,”
Precis. Mach.
,
29
(
8
), pp.
580
586
(in Japanese).
30.
Wang
,
Z. R.
, and
Liu
,
G.
,
1989
, “
A Suggestion on the Standardization of English Technical Terminology Used in Rotary Forming
,”
Proceedings of the Fourth International Conference of Rotary Forming
,
China
, Vol.
10
, pp.
38
41
.
31.
Avitzur
,
B.
, and
Yang
,
C. T.
,
1960
, “
Analysis of Power Spinning of Cones
,”
ASME J. Eng. Ind.
,
82
(
3
), pp.
231
244
.
32.
Kim
,
C.
,
Jung
,
S. Y.
, and
Choi
,
J. C.
,
2003
, “
A Lower Upper-Bound Solution for Shear Spinning of Cones
,”
Int. J. Mech. Sci.
,
45
(
11
), pp.
1893
1911
.
33.
Kim
,
J. H.
,
Park
,
J. H.
, and
Kim
,
C.
,
2003
, “
A Study on the Mechanics of Shear Spinning of Cones
,”
J. Mech. Sci. Technol.
,
20
(
6
), pp.
806
818
.
34.
Nagarajan
,
H. N.
,
Kotrappa
,
H.
, and
Mallanna
,
C.
,
1981
, “
Mechanics of Flow Forming
,”
Ann. CIRP
,
30
(
1
), pp.
159
162
.
35.
Wang
,
L.
, and
Long
,
H.
,
2011
, “
Investigation of Material Deformation in Multi-Pass Conventional Metal Spinning
,”
Mater. Des.
,
32
(
5
), pp.
2891
2899
.
36.
Polyblank
,
J. A.
, and
Allwood
,
J. M.
,
2014
, “
Support Roller Control and Springback Compensation in Flexible Spinning
,”
11th ICTP
,
Nagoya, Japan
,
Oct. 19–24
, Vol.
81
, pp.
2499
2504
.
37.
Veille
,
J. R.
,
Toussaint
,
F.
,
Tabourot
,
L.
,
Vautrot
,
M.
, and
Balland
,
P.
,
2015
, “
Experimental and Numerical Investigation of a Short, Thin-Walled Steel Tube Incremental Forming Process
,”
J. Manuf. Process.
,
19
, pp.
59
66
.
38.
Wang
,
Y.
,
Shu
,
X. D.
,
Tian
,
D. Y.
,
Wei
,
Y. L.
, and
Zhu
,
Y.
,
2017
, “
Influence of Process Parameters on Flange Flatness of Conical Spun Parts With Thin Wall
,”
Mech. Sci. Technol.
,
36
(
7
), pp.
1068
1072
(in Chinese).
39.
Simufact.forming, Demos&examples. MSC Software Corporation,
2016
.
40.
Li
,
Z. X.
, and
Shu
,
X. D.
,
2019
, “
Numerical and Experimental Analysis on Multi-Pass Conventional Spinning of the Cylindrical Part With GH3030
,”
Int. J. Adv. Manuf. Technol.
You do not currently have access to this content.