Abrasive flow machining (AFM) is a nontraditional surface finishing method that finishes complex surface by pushing the abrasive media flow through the workpiece surface. The entrance effect that the material removal increases at the entrance of changing the cross-sectional flow channel is a difficult problem for AFM. In this paper, the effects of media rheological properties on the entrance effect are discussed. To explore the effects of the media's viscoelasticity on the entrance effect, two sets of media with different viscoelasticity properties are adopted to study their rheological and machining performances in the designed flow channel with a contraction area. The rheological properties are tested by frequency sweep and characterized by the Maxwell viscoelastic model and the Carreau viscous model. In the experiment, the variation of the profile height (ΔH) and the variation ratio of the roughness (ΔRa) on the workpiece surface are measured. Moreover, numerical simulation results under different constitutive equations are compared with the experimental results. It shows that the numerical simulation results of a viscoelastic model have a better agreement with the experimental results than the viscous model, and the increase of the viscoelasticity makes the entrance effect be exacerbated, which can be predicted by the viscoelastic numerical simulation.

References

1.
Fu
,
Y. Z.
,
Gao
,
H.
,
Wang
,
X. P.
, and
Guo
,
D. M.
,
2017
, “
Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies
,”
Chinese J. Mech. Eng.
,
30
(
3
), pp.
528
543
.
2.
Venkatesh
,
G.
,
Sharma
,
A. K.
, and
Kumar
,
P.
,
2015
, “
On Ultrasonic Assisted Abrasive Flow Finishing of Bevel Gears
,”
Int. J. Mach. Tools Manuf.
,
89
(
8
), pp.
29
38
.
3.
Cheng
,
K.
,
Shao
,
Y. Z.
,
Bodenhorst
,
R.
, and
Jadva
,
M.
,
2017
, “
Modeling and Simulation of Material Removal Rates and Profile Accuracy Control in Abrasive Flow Machining of the Integrally Bladed Rotor Blade and Experimental Perspectives
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121020
.
4.
Kiani
,
A.
,
Esmailian
,
M.
, and
Amirabadi
,
H.
,
2016
, “
Abrasive Flow Machining: A Review on New Developed Hybrid AFM Process
,”
Int. J. Adv. Des. Manuf. Technol.
,
9
(
1
), pp.
103
113
.
5.
Williams
,
R. E.
,
1998
, “
Acoustic Emission Characteristics of Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
264
.
6.
Jabbar
,
K. A.
, and
Pagilla
,
P. R.
,
2019
, “
Modeling and Analysis of Web Span Tension Dynamics Considering Thermal and Viscoelastic Effects in Roll-to-Roll Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), pp.
1
9
.
7.
Zhang
,
K. H.
,
Shi
,
D.
,
Xu
,
Y. C.
, and
Ding
,
J. F.
,
2014
, “
Investigation of Material Removal Variations During Abrasive Flow Machining
,”
Mater. Res. Innov.
,
18
(
S2
), pp.
S2-928
S2-931
.
8.
Uhlmann
,
E.
,
Doits
,
M.
, and
Schmiedel
,
C.
,
2013
, “
Development of a Material Model for Visco-Elastic Abrasive Medium in Abrasive Flow Machining
,”
Procedia CIRP
,
8
(
6
), pp.
351
356
.
9.
Sarker
,
M.
, and
Chen
,
X. B.
,
2019
, “
Modeling the Flow Behavior and Flow Rate of Medium Viscosity Alginate for Scaffold Fabrication With a Three-Dimensional Bioplotter
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), pp.
1
14
.
10.
Sankar
,
R.
,
Jain
,
M.
,
Ramkumar
,
V. K.
,
Joshi
,
J.
, and
M
,
Y.
,
2011
, “
Rheological Characterization of Styrene-Butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
947
957
.
11.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailor
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Preferential Media for Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011009
.
12.
Li
,
M.
,
Lyu
,
B. H.
,
Yuan
,
J. L.
,
Yao
,
W. F.
,
Zhou
,
F. F.
, and
Zhong
,
M. P.
,
2016
, “
Evolution and Equivalent Control Law of Surface Roughness in Shear-Thickening Polishing
,”
Int. J. Mach. Tools Manuf.
,
108
(
8
), pp.
113
126
.
13.
Uhlmann
,
E.
,
Schmiedel
,
C.
, and
Wendler
,
J.
,
2015
, “
CFD Simulation of the Abrasive Flow Machining Process
,”
Procedia CIRP
,
31
(
6
), pp.
209
214
.
14.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1903
1923
.
15.
Singh
,
S.
,
Kumar
,
D.
, and
Sankar
,
M. R.
,
2017
, “
Experimental, Theoretical, and Simulation Comparative Study of Nano Surface Roughness Generated During Abrasive Flow Finishing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), pp.
1
12
.
16.
Kheradmand
,
S.
,
Esmailian
,
M.
, and
Fatahy
,
A.
,
2017
, “
Numerical Simulation of the Combination Effect of External Magnetic Field and Rotating Workpiece on Abrasive Flow Finishing
,”
J. Mech. Sci. Technol.
,
31
(
4
), pp.
1835
1841
.
17.
Yuan
,
Q. L.
,
Qi
,
H.
, and
Wen
,
D. H.
,
2016
, “
Numerical and Experimental Study on the Spiral-Rotating Abrasive Flow in Polishing of the Internal Surface of 6061 Aluminium Alloy Cylinder
,”
Powder Technol.
,
302
(
5
), pp.
153
159
.
18.
Bremerstein
,
T.
,
Potthoff
,
A.
,
Michaelis
,
A.
,
Schmiedel
,
C.
,
Uhlmann
,
E.
,
Blug
,
B.
, and
Amann
,
T.
,
2015
, “
Wear of Abrasive Media and Its Effect on Abrasive Flow Machining Results
,”
Wear
,
342–343
(
6
), pp.
44
51
.
19.
Seifu
,
Y.
,
Kumar
,
S. S.
, and
Hiremath
,
S. S.
,
2016
, “
Modeling and Simulation: Machining of Mild Steel Using Indigenously Developed Abrasive Flow Machine
,”
Procedia Technol.
,
25
(
6
), pp.
1312
1319
.
20.
Wan
,
S.
,
Ang
,
Y. J.
,
Sato
,
T.
, and
Lim
,
G. C.
,
2014
, “
Process Modeling and CFD Simulation of Two-Way Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1077
1086
.
21.
Venkatesh
,
G.
,
Sharma
,
A. K.
, and
Singh
,
N.
,
2015
, “
Simulation of Media Behaviour in Vibration Assisted Abrasive Flow Machining
,”
Simul. Model. Pract. Theory
,
51
(
4
), pp.
1
13
.
22.
Singh
,
S.
,
Raj
,
A. S. A.
,
Sankar
,
M. R.
, and
Jain
,
V. K.
,
2016
, “
Finishing Force Analysis and Simulation of Nanosurface Roughness in Abrasive Flow Finishing Process Using Medium Rheological Properties
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
2163
2178
.
23.
Sooraj
,
V. S.
, and
Radhakrishnan
,
V.
,
2014
, “
Fine Finishing of Internal Surfaces Using Elastic Abrasives
,”
Int. J. Mach. Tools Manuf.
,
78
(
10
), pp.
30
40
.
24.
Fu
,
Y. Z.
,
Wang
,
X. P.
,
Gao
,
H.
,
Wei
,
H. B.
, and
Li
,
S. C.
,
2016
, “
Blade Surface Uniformity of Blisk Finished by Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1725
1735
.
25.
Kenda
,
J.
,
Pušavec
,
F.
, and
Kopac
,
J.
,
2014
, “
Modeling and Energy Efficiency of Abrasive Flow Machining on Tooling Industry Case Study
,”
Procedia CIRP
,
13
(
6
), pp.
13
18
.
26.
Tian
,
H. Q.
,
Zhao
,
D.
,
Wang
,
M. J.
, and
Jin
,
Y. F.
,
2019
, “
Effect of Die Lip Geometry on Polymer Extrudate Deformation in Complex Small Profile Extrusion
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), pp.
1
9
.
27.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2004
, “
Experimental Investigation Into Cutting Forces and Active Grain Density During Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
201
211
.
28.
Wang
,
X.P.
,
Fu
,
Y.Z.
, and
Gao
,
H.
,
2016
, “
Study on Effect of Viscoelastic Properties on Surface Roughness Uniformity in Abrasive Flow Machining for Plate Surface
,”
Adv. Mater. Res.
1136
(
1
), pp.
131
134
.
29.
Plott
,
J.
, and
Shih
,
A.
,
2019
, “
Measurement and Modeling of Forces in Extrusion-Based Additive Manufacturing of Flexible Silicone Elastomer With Thin Wall Structures
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), pp.
1
11
.
30.
Luo
,
Q.
,
Ramarajan
,
S.
, and
Babu
,
S. V.
,
1998
, “
Modification of the Preston Equation for the Chemical-Mechanical Polishing of Copper
,”
Thin Solid Films
,
335
(
7
), pp.
160
167
.
31.
Cordero-Dávila
,
A.
,
Izazaga-Pérez
,
R.
,
González-García
,
J.
, and
Cuautle-Cortés
,
J.
,
2013
, “
Polisher Density Into Preston Equation
,”
Optik (Stuttg)
,
124
(
19
), pp.
3909
3912
.
32.
Wei
,
H. B.
,
Peng
,
C.
,
Gao
,
H.
,
Wang
,
X. P.
, and
Wang
,
X. Y.
,
2019
, “
On Establishment and Validation of a New Predictive Model for Material Removal in Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
138
(
10
), pp.
66
79
.
33.
Liu
,
X.
,
Chen
,
G. Q.
,
Ni
,
J.
, and
Feng
,
Z. L.
,
2019
, “
Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), pp.
1
12
.
34.
Kulkarni
,
D. R.
,
Mujumdar
,
S. S.
, and
Kapoor
,
S. G.
,
2019
, “
Study of Film Formation on Grooved Tools in an Atomization-Based Cutting Fluid Delivery System for Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), pp.
1
11
.
35.
Gleissle
,
W.
, and
Hochstein
,
B.
,
2003
, “
Validity of the Cox–Merz Rule for Concentrated Suspensions
,”
J. Rheol. (N. Y. N. Y)
,
47
(
2003
), p.
897
.
36.
Winter
,
H. H.
,
2009
, “
Three Views of Viscoelasticity for Cox-Merz Materials
,”
Rheol. Acta
,
48
(
3
), pp.
241
243
.
You do not currently have access to this content.