The milling of thin-walled workpieces is a common process in many industries. However, the machining defects are easy to occur due to the vibration and/or deformation induced by the poor stiffness of the thin structures, particularly when side milling the edges of plates. To this problem, an attempt by inclining the tool to a proper tilt angle in milling the edges of plates was proposed in this paper, in order to decrease the cutting force component along the direction of the lowest stiffness of the plates, and therefore to mitigate the machining vibration and improve the machined surface quality effectively. First, the milling force model in consideration of the undeformed chip thickness and the tool-workpiece engagement (TWE) was introduced in detail. Then, a new analytical assessment model based on the precisely established cutting force model was developed so as to obtain the optimum tool tilt angle for the minimum force-induced defects after the operation. Finally, the reliability and correctness of the theoretical force model and the proposed assessment model were validated by experiments. The methodology in this paper could provide practical guidance for achieving high-quality machined surface in the milling operation of thin-walled workpieces.

References

1.
Liu
,
G.
,
2009
, “
Study on Deformation of Titanium Thin-Walled Part in Milling Process
,”
J. Mater. Process. Technol.
,
209
(
6
), pp.
2788
2793
.
2.
Huang
,
T.
,
Zhang
,
X.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
.
3.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
.
4.
Dang
,
X.
,
Wan
,
M.
,
Yang
,
Y.
, and
Zhang
,
W.
,
2019
, “
Efficient Prediction of Varying Dynamic Characteristics in Thin-Wall Milling Using Freedom and Mode Reduction Methods
,”
Int. J. Mech. Sci.
,
150
, pp.
202
216
.
5.
Wan
,
M.
,
Gao
,
T.
,
Feng
,
J.
, and
Zhang
,
W.
,
2019
, “
On Improving Chatter Stability of Thin-Wall Milling by Prestressing
,”
J. Mater. Process. Technol.
,
264
, pp.
32
44
.
6.
Abele
,
E.
, and
Fiedler
,
U.
,
2004
, “
Creating Stability Lobe Diagrams During Milling
,”
CIRP Ann.
,
53
(
1
), pp.
309
312
.
7.
Comak
,
A.
, and
Altintas
,
Y.
,
2018
, “
Dynamics and Stability of Turn-Milling Operations with Varying Time Delay in Discrete Time Domain
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101013
.
8.
Mehrpouya
,
M.
,
Graham
,
E.
, and
Park
,
S. S.
,
2013
, “
Robust Prediction of Chatter Stability in Milling Based on the Analytical Chatter Stability
,”
J. Manuf. Process
,
15
(
4
), pp.
508
517
.
9.
Regib
,
E. A.
,
Ni
,
J.
, and
Lee
,
S. H.
,
2003
, “
Programming Spindle Speed Variation for Machine Tool Chatter Suppression
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1229
1240
.
10.
Chen
,
K.
, and
Wu
,
D.
,
2010
, “
Chatter Suppression in Fast Tool Servo-Assisted Turning by Spindle Speed Variation
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1038
1047
. 10.1016/j.ijmachtools.2010.09.001
11.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2018
, “
Online Chatter Suppression in Turning by Adaptive Amplitude Modulation of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121003
.
12.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
.
13.
Xu
,
K.
, and
Tang
,
K.
,
2014
, “
Five-Axis Tool Path and Feed Rate Optimization Based on the Cutting Force–Area Quotient Potential Field
,”
Int. J. Adv. Manuf. Tech.
,
75
(
9–12
), pp.
1661
1679
.
14.
Lotfi
,
B.
,
Zhong
,
Z. W.
, and
Khoo
,
L. P.
,
2009
, “
Variable Feed Rates and Variable Machine Forces for a Constant Material Removal Rate and Constant Cutting Force Along Pythagorean-Hodograph Curves
,”
Int. J. Adv. Manuf. Tech.
,
40
(
1–2
), pp.
171
178
.
15.
Comak
,
A.
, and
Budak
,
E.
,
2017
, “
Modeling Dynamics and Stability of Variable Pitch and Helix Milling Tools for Development of a Design Method to Maximize Chatter Stability
,”
Precis. Eng.
,
47
, pp.
459
468
.
16.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
.
17.
Denkena
,
B.
, and
Sellmeier
,
V.
,
2011
, “
Stable Islands in the Stability Chart of Milling Processes due to Unequal Tooth Pitch
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
152
164
.
18.
Olgac
,
N.
, and
Sipahi
,
R.
,
2016
, “
Dynamics and Stability of Variable-Pitch Milling
,”
J. Vib. Control.
,
13
(
7
), pp.
1031
1043
.
19.
Yusoff
,
A. R.
, and
Sims
,
N. D.
,
2011
, “
Optimisation of Variable Helix Tool Geometry for Regenerative Chatter Mitigation
,”
Int. J. Mach. Tools Manuf.
,
51
(
2
), pp.
133
141
.
20.
Huang
,
T.
,
Zhu
,
L.
,
Du
,
S.
,
Chen
,
Z.
, and
Ding
,
H.
,
2018
, “
Robust Active Chatter Control in Milling Processes With Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101005
.
21.
Ishiguro
,
R.
,
Suzuki
,
N.
, and
Kojima
,
T.
,
2016
, “
Design of Irregular Pitch end Mills to Attain Robust Suppression of Regenerative Chatter
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
129
132
.
22.
Wan
,
X.
,
Zhang
,
Y.
, and
Huang
,
X.
,
2013
, “
Investigation of Influence of Fixture Layout on Dynamic Response of Thin-Wall Multi-Framed Work-Piece in Machining
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
87
99
.
23.
Kolluru
,
K.
, and
Axinte
,
D.
,
2014
, “
Novel Ancillary Device for Minimising Machining Vibrations in Thin Wall Assemblies
,”
Int. J. Mach. Tools Manuf
,
85
, pp.
79
86
.
24.
Sallese
,
L.
,
Scippa
,
A.
,
Grossi
,
N.
, and
Campatelli
,
G.
,
2016
, “
Investigation Actuation Strategies in Active Fixtures for Chatter Suppression
,”
Procedia CIRP
,
46
, pp.
311
314
.
25.
Abele
,
E.
,
Hanselka
,
H.
,
Haase
,
F.
,
Schlote
,
D.
, and
Schiffler
,
A.
,
2008
, “
Development and Design of an Active Work Piece Holder Driven by Piezo Actuators
,”
Prod. Eng.
,
2
(
4
), pp.
437
442
.
26.
Zhang
,
X.
,
Wang
,
C.
,
Liu
,
Y.
,
Cao
,
H.
, and
Chen
,
X.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression via Piezoelectric Stack Actuators
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
53
66
.
27.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
.
28.
Pratt
,
J. R.
, and
Nayfeh
,
A. H.
,
2001
, “
Chatter Control and Stability Analysis of a Cantilever Boring Bar Under Regenerative Cutting Conditions
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
759
792
.
29.
Chen
,
F.
,
Lu
,
X.
, and
Altintas
,
Y.
,
2014
, “
A Novel Magnetic Actuator Design for Active Damping of Machining Tools
,”
Int. J. Mach. Tools Manuf.
,
85
, pp.
58
69
.
30.
Munoa
,
J.
,
Beudaert
,
X.
,
Erkorkmaz
,
K.
,
Iglesias
,
A.
, and
Zatarain
,
M.
,
2015
, “
Active Suppression of Structural Chatter Vibrations Using Machine Drives and Accelerometers
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
385
388
.
31.
Bolsunovsky
,
S.
,
Vermel
,
V.
,
Gubanov
,
G.
, and
Leontiev
,
A.
,
2013
, “
Reduction of Flexible Workpiece Vibrations With Dynamic Support Realized as Tuned Mass Damper
,”
Procedia CIRP
,
8
, pp.
230
234
.
32.
Yuan
,
H.
,
Wan
,
M.
, and
Yang
,
Y.
,
2019
, “
Design of a Tunable Mass Damper for Mitigating Vibrations in Milling of Cylindrical Parts
,”
Chin. J. Aeronaut.
,
32
(
3
), pp.
748
758
.https://doi.org/10.1016/j.cja.2018.12.002
33.
Sims
,
N. D.
,
Amarasinghe
,
A.
, and
Radgway
,
K.
, “
Particle Dampers for Work-Piece Chatter Mitigation
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–11, 2005
, pp.
1
8
.
34.
Habib
,
G.
,
Kerschen
,
G.
, and
Stepan
,
G.
,
2017
, “
Chatter Mitigation Using the Nonlinear Tuned Vibration Absorber
,”
Int. J. Nonlin Mech.
,
91
, pp.
103
112
.
35.
Kolluru
,
K.
,
Axinte
,
D.
, and
Becker
,
A.
,
2013
, “
A Solution for Minimising Vibrations in Milling of Thin Walled Casings by Applying Dampers to Workpiece Surface
,”
CIRP Ann.
,
62
(
1
), pp.
415
418
.
36.
Yang
,
Y.
,
Xu
,
D.
, and
Liu
,
Q.
,
2015
, “
Milling Vibration Attenuation by Eddy Current Damping
,”
Int. J. Adv. Manuf. Tech.
,
81
(
1–4
), pp.
445
454
.
37.
Zhuang
,
K.
,
Weng
,
J.
,
Zhu
,
D.
, and
Ding
,
H.
,
2018
, “
Analytical Modeling and Experimental Validation of Cutting Forces Considering Edge Effects and Size Effects With Round Chamfered Ceramic Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081012
.
38.
Zhang
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
,
Pang
,
B.
, and
Zhao
,
W.
,
2018
, “
General Modeling and Calibration Method for Cutting Force Prediction With Flat-End Cutter
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021007
.
39.
Zhu
,
K.
, and
Zhang
,
Y.
,
2017
, “
Modeling of the Instantaneous Milling Force Per Tooth With Tool Run-Out Effect in High Speed Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
37
48
.
40.
Tsai
,
M. Y.
,
Chang
,
S. Y.
,
Hung
,
J. P.
, and
Wang
,
C. C.
,
2016
, “
Investigation of Milling Cutting Forces and Cutting Coefficient for Aluminum 6060-T6
,”
Comput. Electr. Eng.
,
51
, pp.
320
330
.
41.
Nishida
,
I.
,
Okumura
,
R.
,
Sato
,
R.
, and
Shirase
,
K.
,
2018
, “
Cutting Force Simulation in Minute Time Resolution for Ball End Milling Under Various Tool Posture
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021009
.
You do not currently have access to this content.