Abstract

This paper presents the effects of ultrasonic vibration assistance on shear band formation and chip segmentation mechanism in orthogonal cutting of Ti–6Al–4V. Experimental observations of chip microstructure show that the shear bands disappear when vibration assistance is applied along tangential direction at certain cutting speeds. A plastic chip flow model is developed to predict the stress and temperature variations in the primary shear zone at cutting, chip elastic recovery, and tool-chip separation periods. The simulation results show that the temperature in the primary shear zone in vibration-assisted cutting is much lower when compared with conventional cutting, therefore suppresses the generation of shear bands. The simulations of average cutting forces and pitch lengths of chip segments are compared with the experimental results. A finite element model is further developed to prove the temperature reduction when ultrasonic vibration assistance is applied.

References

1.
Cotterell
,
M.
, and
Byrne
,
G.
,
2008
, “
Dynamics of Chip Formation During Orthogonal Cutting of Titanium Alloy Ti–6Al–4V
,”
CIRP. Ann.
,
57
(
1
), pp.
93
96
. 10.1016/j.cirp.2008.03.007
2.
Bermingham
,
M.
,
Kirsch
,
J.
,
Sun
,
S.
,
Palanisamy
,
S.
, and
Dargusch
,
M.
,
2011
, “
New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V
,”
Int. J. Mach. Tools. Manuf.
,
51
(
6
), pp.
500
511
. 10.1016/j.ijmachtools.2011.02.009
3.
Shaw
,
M. C.
, and
Cookson
,
J.
,
2005
,
Metal Cutting Principles
,
Vol. 2
,
Oxford University Press
,
New York
.
4.
Recht
,
R.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
. 10.1115/1.3629585
5.
Komanduri
,
R.
, and
Brown
,
R.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
J. Eng. Ind.
,
103
(
1
), pp.
33
51
. 10.1115/1.3184458
6.
Komanduri
,
R.
, and
Hou
,
Z.-B.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metallurgical Mater. Trans. A
,
33
(
9
), p.
2995
. 10.1007/s11661-002-0284-1
7.
Burns
,
T. J.
, and
Davies
,
M. A.
,
1997
, “
Nonlinear Dynamics Model for Chip Segmentation in Machining
,”
Phys. Rev. Lett.
,
79
(
3
), p.
447
. 10.1103/PhysRevLett.79.447
8.
Davies
,
M. A.
,
Burns
,
T. J.
, and
Evans
,
C. J.
,
1997
, “
On the Dynamics of Chip Formation in Machining Hard Metals
,”
CIRP. Ann.
,
46
(
1
), pp.
25
30
. 10.1016/S0007-8506(07)60768-9
9.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
. 10.1016/S0749-6419(01)00003-1
10.
Vyas
,
A.
, and
Shaw
,
M.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
. 10.1115/1.2831200
11.
Chen
,
G.
,
Ren
,
C.
,
Yang
,
X.
,
Jin
,
X.
, and
Guo
,
T.
,
2011
, “
Finite Element Simulation of High-speed Machining of Titanium Alloy (Ti–6Al–4V) Based on Ductile Failure Model
,”
Int. J. Adv. Manuf. Technol.
,
56
(
9–12
), pp.
1027
1038
. 10.1007/s00170-011-3233-6
12.
Özel
,
T.
,
Sima
,
M.
,
Srivastava
,
A.
, and
Kaftanoglu
,
B.
,
2010
, “
Investigations on the Effects of Multi-layered Coated Inserts in Machining Ti–6Al–4V Alloy With Experiments and Finite Element Simulations
,”
CIRP. Ann.
,
59
(
1
), pp.
77
82
. 10.1016/j.cirp.2010.03.055
13.
Melkote
,
S. N.
,
Liu
,
R.
,
Fernandez-Zelaia
,
P.
, and
Marusich
,
T.
,
2015
, “
A Physically Based Constitutive Model for Simulation of Segmented Chip Formation in Orthogonal Cutting of Commercially Pure Titanium
,”
CIRP. Ann.
,
64
(
1
), pp.
65
68
. 10.1016/j.cirp.2015.04.060
14.
Childs
,
T. H.
,
Arrazola
,
P. -J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
. 10.1016/j.jmatprotec.2018.01.026
15.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
. 10.1115/1.4032583
16.
Liu
,
G.
,
Shah
,
S.
, and
Özel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
. 10.1115/1.4042788
17.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti–6Al–4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng. A.
,
241
(
1
), pp.
48
59
. 10.1016/S0921-5093(97)00471-1
18.
Yang
,
X.
, and
Richard Liu
,
C.
,
1999
, “
Machining Titanium and Its Alloys
,”
Mach. Sci. Technol.
,
3
(
1
), pp.
107
139
. 10.1080/10940349908945686
19.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Viscous Shear Banding in Cutting of Metals
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111004
. 10.1115/1.4040875
20.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M’Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2192
), p.
20160167
. 10.1098/rspa.2016.0167
21.
Brehl
,
D.
, and
Dow
,
T.
,
2008
, “
Review of Vibration-Assisted Machining
,”
Precision Eng.
,
32
(
3
), pp.
153
172
. 10.1016/j.precisioneng.2007.08.003
22.
Patil
,
S.
,
Joshi
,
S.
,
Tewari
,
A.
, and
Joshi
,
S. S.
,
2014
, “
Modelling and Simulation of Effect of Ultrasonic Vibrations on Machining of Ti6Al4V
,”
Ultrasonics
,
54
(
2
), pp.
694
705
. 10.1016/j.ultras.2013.09.010
23.
Sui
,
H.
,
Zhang
,
X.
,
Zhang
,
D.
,
Jiang
,
X.
, and
Wu
,
R.
,
2017
, “
Feasibility Study of High-Speed Ultrasonic Vibration Cutting Titanium Alloy
,”
J. Mater. Process. Technol.
,
247
, pp.
111
120
. 10.1016/j.jmatprotec.2017.03.017
24.
Pujana
,
J.
,
Rivero
,
A.
,
Celaya
,
A.
, and
De Lacalle
,
L. L.
,
2009
, “
Analysis of Ultrasonic-Assisted Drilling of Ti6Al4V
,”
Int. J. Mach. Tools. Manuf.
,
49
(
6
), pp.
500
508
. 10.1016/j.ijmachtools.2008.12.014
25.
Sanda
,
A.
,
Arriola
,
I.
,
Navas
,
V. G.
,
Bengoetxea
,
I.
, and
Gonzalo
,
O.
,
2016
, “
Ultrasonically Assisted Drilling of Carbon Fibre Reinforced Plastics and Ti6Al4V
,”
J. Manuf. Processes
,
22
, pp.
169
176
. 10.1016/j.jmapro.2016.03.003
26.
Pawar
,
S.
, and
Joshi
,
S. S.
,
2016
, “
Experimental Analysis of Axial and Torsional Vibrations Assisted Tapping of Titanium Alloy
,”
J. Manuf. Processes
,
22
, pp.
7
20
. 10.1016/j.jmapro.2016.01.006
27.
Bai
,
W.
,
Sun
,
R.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2017
, “
Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti6Al4V
,”
Int. J. Mech. Sci.
,
133
, pp.
357
367
. 10.1016/j.ijmecsci.2017.08.054
28.
Ning
,
J.
,
Nguyen
,
V.
, and
Liang
,
S. Y.
,
2019
, “
Analytical Modeling of Machining Forces of Ultra-fine-grained Titanium
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
627
636
. 10.1007/s00170-018-2889-6
29.
Ning
,
J.
, and
Liang
,
S. Y.
,
2019
, “
Predictive Modeling of Machining Temperatures with Force–temperature Correlation Using Cutting Mechanics and Constitutive Relation
,”
Materials
,
12
(
2
), p.
284
. 10.3390/ma12020284
30.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti–6Al–4V At High Temperatures Measured Using the Shpb Technique
,”
Int. J. Impact Eng.
,
31
(
6
), pp.
735
754
. 10.1016/j.ijimpeng.2004.04.010
31.
Tounsi
,
N.
,
Vincenti
,
J.
,
Otho
,
A.
, and
Elbestawi
,
M.
,
2002
, “
From the Basic Mechanics of Orthogonal Metal Cutting Toward the Identification of the Constitutive Equation
,”
Int. J. Mach. Tools. Manuf.
,
42
(
12
), pp.
1373
1383
. 10.1016/S0890-6955(02)00046-9
32.
Agmell
,
M.
,
Ahadi
,
A.
, and
Ståhl
,
J.-E.
,
2014
, “
Identification of Plasticity Constants From Orthogonal Cutting and Inverse Analysis
,”
Mech. Mater.
,
77
, pp.
43
51
. 10.1016/j.mechmat.2014.07.005
33.
Umbrello
,
D.
,
Msaoubi
,
R.
, and
Outeiro
,
J.
,
2007
, “
The Influence of Johnson-Ccook Material Constants on Finite Element Simulation of Machining of AISI 316l Steel
,”
Int. J. Mach. Tools. Manuf.
,
47
(
3–4
), pp.
462
470
. 10.1016/j.ijmachtools.2006.06.006
34.
Ning
,
J.
, and
Liang
,
S. Y.
,
2019
, “
Inverse Identification of Johnson-Cook Material Constants Based on Modified Chip Formation Model and Iterative Gradient Search Using Temperature and Force Measurements
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
2865
2876
. 10.1007/s00170-019-03286-0
35.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
New York, NY
.
36.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools. Manuf.
,
48
(
3–4
), pp.
275
288
. 10.1016/j.ijmachtools.2007.10.014
37.
Sun
,
J.
, and
Guo
,
Y.
,
2009
, “
Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
41
(
7–8
), pp.
651
659
. 10.1007/s00170-008-1521-6
You do not currently have access to this content.