Selective assembly is a means of obtaining higher quality product assemblies by using relatively low-quality components. Components are selected and classified according to their dimensions and then assembled. Past research has often focused on components that have normal dimensional distributions to try to find assemblies with minimal variation and surplus parts. This paper presents a multistage approach to selective assembly for all distributions of components and with no surplus, thus offering less variation compared to similar approaches. The problem is divided into different stages and a genetic algorithm (GA) is used to find the best combination of groups of parts in each stage. This approach is applied to two available cases from the literature. The results show improvement of up to 20% in variation compared to past approaches.

References

1.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
.
2.
Wang
,
Y.
,
Shi
,
J.
,
Lu
,
S.
, and
Wang
,
Y.
,
2016
, “
Selective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041005
.
3.
Gu
,
D.
,
Dai
,
D.
,
Chen
,
W.
, and
Chen
,
H.
,
2016
, “
Selective Laser Melting Additive Manufacturing of Hard-to-Process Tungsten-Based Alloy Parts With Novel Crystalline Growth Morphology and Enhanced Performance
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081003
.
4.
Mansor
,
E.
,
1961
, “
Selective Assembly—Its Analysis and Applications
,”
Int. J. Prod. Res.
,
1
(
1
), pp.
13
24
.
5.
Desmond
,
D.
, and
Setty
,
C.
,
1962
, “
Simplification of Selective Assembly
,”
Int. J. Prod. Res.
,
1
(
3
), pp.
3
18
.
6.
Pugh
,
G. A.
,
1992
, “
Selective Assembly With Components of Dissimilar Variance
,”
Comput. Ind. Eng.
,
23
(
1–4
), pp.
487
491
.
7.
Fang
,
X.
, and
Zhang
,
Y.
,
1995
, “
A New Algorithm for Minimizing the Surplus Parts in Selective Assembly
,”
Comput. Ind. Eng.
,
28
(
2
), pp.
341
350
.
8.
Fang
,
X.
, and
Zhang
,
Y.
,
1996
, “
Assuring the Matchable Degree in Selective Assembly Via a Predictive Model Based on Set Theory and Probability Method
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
252
258
.
9.
Chan
,
K.
, and
Linn
,
R.
,
1999
, “
A Grouping Method for Selective Assembly of Parts of Dissimilar Distributions
,”
J. Qual. Eng.
,
11
(
2
), pp.
221
234
.
10.
Mease
,
D. N.
,
Vijayan
,
N.
, and
Sudjivnto
,
A.
,
2004
, “
Selective Assembly in Manufacturing: Statistical Issues and Optimal Binning Strategies
,”
Technometrics
,
46
(
2
), pp.
165
175
.
11.
Mohammed
,
A.
,
Schmidt
,
B.
, and
Wang
,
L.
,
2016
, “
Energy-Efficient Robot Configuration for Assembly
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051007
.
12.
Farzad
,
H.
, and
Ebrahimi
,
R.
,
2016
, “
Die Profile Optimization of Rectangular Cross Section Extrusion in Plane Strain Condition Using Upper Bound Analysis Method and Simulated Annealing Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021006
.
13.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101004
.
14.
Aboutaleb
,
A. M.
,
Tschopp
,
M. A.
,
Rao
,
P. K.
, and
Bian
,
L.
,
2017
, “
Multi-Objective Accelerated Process Optimization of Part Geometric Accuracy in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101001
.
15.
Brika
,
S. E.
,
Zhao
,
Y. F.
,
Brochu
,
M.
, and
Mezzetta
,
J.
,
2017
, “
Multi-Objective Build Orientation Optimization for Powder Bed Fusion by Laser
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111011
.
16.
Ponnambalam
,
S.
,
Sankar
,
S. S.
,
Sriram
,
S.
, and
Gurumarimuthu
,
M.
,
2006
, “
Parallel Populations Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly
,”
International Conference on Automation Science and Engineering
(
CASE
), Shanghai, China, Oct. 8–10, pp. 496–500.
17.
Kumar
,
M.
,
Kannan
,
S.
, and
Jayabalan
,
V.
,
2007
, “
A New Algorithm for Minimizing Surplus Parts in Selective Assembly by Using Genetic Algorithm
,”
Int. J. Prod. Res.
,
45
(
20
), pp.
4793
4822
.
18.
Asha
,
A.
,
Kannan
,
S.
, and
Jayabalan
,
V.
,
2008
, “
Optimization of Clearance Variation in Selective Assembly for Components With Multiple Characteristics
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
1026
1044
.
19.
Kannan
,
S.
,
Asha
,
A.
, and
Jayabalan
,
V.
,
2005
, “
A New Method in Selective Assembly to Minimize Clearance Variation for a Radial Assembly Using Genetic Algorithm
,”
J. Qual. Eng.
,
17
(
4
), pp.
595
607
.
20.
Kumar
,
M.
,
Sivasubramanian
,
R.
, and
Jayabalan
,
V.
,
2009
, “
Particle Swarm Optimization for Minimizing Assembly Variation in Selective Assembly
,”
Int. J. Adv. Manuf. Technol.
,
42
(7–8), pp.
793
803
.
21.
Kumar
,
M.
,
Sivasubramanian
,
R.
, and
Jayabalan
,
V.
,
2009
, “
A New Method in Selective Assembly for Components With Skewed Distributions
,”
Int. J. Prod. Qual. Manage.
,
4
, pp.
569
589
.http://www.inderscience.com/offer.php?id=25186
22.
Wang
,
W.
, and
Li
, D., and Chen,
J.
,
2009
, “
Minimizing Assembly Variation in Selective Assembly for Complex Assemblies Using Genetic Algorithm
,”
Second International Conference of Mechanic Automation and Control Engineering
(
MACE
), Hohhot, China, July 15–17, pp. 1401–1406.
23.
Raj
,
M. V.
,
Sankar
,
S. S.
, and
Ponnambalam
,
S. G.
,
2011
, “
Genetic Algorithm to Optimize Manufacturing System Efficiency in Batch Selective Assembly
,”
Int. J. Adv. Manuf. Technol.
,
57
(5–8), pp.
795
810
.
24.
Xu
,
H. Y.
,
Kuo
,
S. H.
, and
Tsai
,
J. W. H.
,
2014
, “
A Selective Assembly Strategy to Improve the Components Utilization Rate With an Application to Hard Disk Drives
,”
Int. J. Adv. Manuf. Technol.
,
75
(
1–4
), pp.
247
255
.
25.
Bäck
,
T.
,
1996
,
Evolutionary Algorithms in Theory and Practice
,
Oxford University Press
, New York.
You do not currently have access to this content.