The necking behavior of sheet metals under stretch-bending process is a challenge for the forming limit prediction. State-of-the-art forming limit curves (FLCs) allow the prediction under the in-plane stretching but fall short in the case under out-of-plane loading condition. To account for the bending and straightening deformation when sheet metal enters a die cavity or slide along a radius, anisotropic hardening model is essential to reflect the nonproportional loading effect on stress evolution. This paper aims to revisit the M-K analysis under the stretch-bending condition and extend it to accommodate both distortionless and distortional anisotropic hardening behavior. Furthermore, hardening models are calibrated based on the same material response. Then the detailed comparison is proposed for providing better insight into the numerical prediction and necking behavior. Finally, the evolution of the yield surface and stress transition states is examined. It is found that the forming limit prediction under stretch-bending condition through the M-K analysis strongly depends on the employed anisotropic hardening model.

References

1.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2011
, “
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
,”
AIP Conf. Proc.
,
1383
(1), pp.
15
34
.
2.
Ben
,
Bettaieb
,
M.
, and
Abed-Meraim
,
F.
,
2017
, “
Localized Necking in Elastomer-Supported Metal Layers: Impact of Kinematic Hardening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061008
.
3.
Banabic
,
D.
,
2016
, “
Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
090801
.
4.
Sheng
,
Z. Q.
, and
Mallick
,
P. K.
,
2017
, “
Predicting Sheet Forming Limit of Aluminum Alloys for Cold and Warm Forming by Developing a Ductile Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111018
.
5.
Barnett
,
A. C.
,
Lee
,
Y.
, and
Moore
,
J. Z.
,
2015
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011005
.
6.
Reza
,
Vaziri
,
Sereshk
,
M.
,
Mohammadi
., and
Bidhendi
,
H.
,
2016
, “
The Contribution of Different Fracture Modes on Drilling Delamination Crack Propagation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011013
.
7.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
8.
Marciniak
,
Z.
, and
Kuczynski
,
K.
,
1967
, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
(
9
), pp.
609
612
.
9.
Stören
,
S.
, and
Rice
,
J.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
421
441
.
10.
Zhu
,
X. H.
,
Weinmann
,
K.
, and
Chandra
,
A.
,
2001
, “
A Unified Bifurcation Analysis of Sheet Metal Forming Limits
,”
ASME J. Eng. Mater. Technol.
,
123
(
3
), pp.
329
333
.
11.
Hu
,
Q.
,
Zhang
,
L.
,
Ouyang
,
Q.
,
Li
,
X.
,
Zhu
,
X.
, and
Chen
,
J.
,
2018
, “
Prediction of Forming Limits for Anisotropic Materials With Nonlinear Strain Paths by an Instability Approach
,”
Int. J. Plast.
,
103
, pp.
143
167
.
12.
Hutchinson
,
J.
, and
Neale
,
K.
,
1978
, “
Sheet Necking-II: Time-Independent Behavior
,”
Symposium of Mechanics of Sheet Metal Forming
, pp.
127
150
.
13.
Xia
,
Z. C.
, and
Zeng
,
D.
,
2009
, “
Sheet Metal Forming Limit Under Stretch-Bending
,”
ASME
Paper No. MSEC_ICMP 2008-72555
.
14.
He
,
J.
,
Xia
,
Z. C.
,
Li
,
S. H.
, and
Zeng
,
D.
,
2013
, “
M-K Analysis of Forming Limit Diagram Under Stretch-Bending
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
0410171
.
15.
He
,
J.
,
Xia
,
Z. C.
,
Zhu
,
X. H.
,
Zeng
,
D.
, and
Li
,
S. H.
,
2013
, “
Sheet Metal Forming Limits Under Stretch-Bending With Anisotropic Hardening
,”
Int. J. Mech. Sci.
,
75
, pp.
244
256
.
16.
He
,
J.
,
Xia
,
Z. C.
,
Zeng
,
D.
, and
Li
,
S. H.
,
2013
, “
Forming Limits of a Sheet Metal After Continuous-Bending-Under-Tension Loading
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
0310091
.
17.
Li
,
S.
,
He
,
J.
,
Gu
,
B.
,
Zeng
,
D.
,
Xia
,
Z. C.
,
Zhao
,
Y.
, and
Lin
,
Z. Q.
,
2018
, “
Anisotropic Fracture of Advanced High Strength Steel Sheets: Experiment and Theory
,”
Int. J. Plast.
,
103
, pp.
95
118
.
18.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,” Central Electricity Generating Board, Berkeley, UK, Report No. RD/B/N731, CEGB.
19.
Chaboche
,
J.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.
20.
Dafalias
,
Y. F.
, and
Popov
,
E. P.
,
1976
, “
Plastic Internal Variables Formalism of Cyclic Plasticity
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
645
651
.
21.
Yoshida
,
F.
, and
Uemori
,
T.
,
2002
, “
A Model of Large-Strain Cyclic Plasticity Describing the Bauschinger Effect and Work hardening Stagnation
,”
Int. J. Plast.
,
18
(
5–6
), pp.
661
686
.
22.
Shi
,
M. F.
,
Zhu
,
X.
,
Xia
,
C.
, and
Stoughton
,
T. B.
,
2008
, “
Determination of Nonlinear Isotropic/Kinematic Hardening Constitutive Parameters for AHSS Using Tension and Compression Tests
,”
Numisheet
, Interlaken, Switzerland, pp.
137
142
.
23.
Teodosiu
,
C.
, and
Hu
,
Z.
,
1995
, “
Evolution of the Intragranular Microstructure at Moderate and Large Strains: Modelling and Computational Significance
,”
Fifth International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM'95)
, Ithaca, NY, pp.
173
182
.
24.
Bruschi
,
S.
,
Altan
,
T.
,
Banabic
,
D.
,
Bariani
,
P. F.
,
Brosius
,
A.
,
Cao
,
J.
,
Ghiotti
,
A.
,
Khraisheh
,
M.
,
Merklein
,
M.
, and
Tekkaya
,
A. E.
,
2014
, “
Testing and Modelling of Material Behaviour and Formability in Sheet Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
63
(
2
), pp.
727
749
.
25.
Barlat
,
F.
,
Gracio
,
J. J.
,
Lee
,
M.-G.
,
Rauch
,
E. F.
, and
Vincze
,
G.
,
2011
, “
An Alternative to Kinematic Hardening in Classical Plasticity
,”
Int. J. Plast.
,
27
(
9
), pp.
1309
1327
.
26.
Mánik
,
T.
,
Holmedal
,
B.
, and
Hopperstad
,
O. S.
,
2015
, “
Strain-Path Change Induced Transients in Flow Stress, Work Hardening and r-Values in Aluminum
,”
Int. J. Plast.
,
69
, pp.
1
20
.
27.
Qin
,
J.
,
Holmedal
,
B.
,
Zhang
,
K.
, and
Hopperstad
,
O. S.
,
2017
, “
Modeling Strain-Path Changes in Aluminum and Steel
,”
Int. J. Solids Struct.
,
117
, pp.
123
136
.
28.
Soyarslan
,
C.
,
Klusemann
,
B.
, and
Bargmann
,
S.
,
2016
, “
The Effect of Yield Surface Curvature Change by Cross Hardening on Forming Limit Diagrams of Sheets
,”
Int. J. Mech. Sci.
,
117
, pp.
53
66
.
29.
Tharrett
,
M. R.
, and
Stoughton
,
T. B.
,
2003
, “
Stretch-Bend Forming Limits of 1008 Ak Steel
,” SAE Paper No. 01–1157.
30.
Beese
,
A. M.
, and
Mohr
,
D.
,
2011
, “
Effect of Stress Triaxiality and Lode Angle on the Kinetics of Strain-Induced Austenite-to-Martensite Transformation
,”
Acta Mater.
,
59
(
7
), pp.
2589
2600
.
31.
Gu
,
B.
,
He
,
J.
,
Li
,
S. H.
,
Chen
,
Y.
, and
Li
,
Y. F.
,
2017
, “
Cyclic Sheet Metal Test Comparison and Parameter Calibration for Springback Prediction of Dual-Phase Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
0910101
.
32.
Li
,
Y. F.
,
He
,
J.
,
Gu
,
B.
, and
Li
,
S. H.
,
2017
, “
Identification of Advanced Constitutive Model Parameters Through Global Optimization Approach for DP780 Steel Sheet
,”
Procedia Eng.
,
207
, pp.
125
130
.
33.
McClintock
,
F. A.
,
Zhou
,
Q.
, and
Wierzbick
,
T.
,
1993
, “
Necking in Plane Strain Under Bending With Constant Tension
,”
J. Mech. Phys. Solids
,
41
(
8
), pp.
1327
1343
.
34.
Yoshida
,
M.
,
Yoshida
,
F.
,
Konishi
,
H.
, and
Fukumoto
,
K.
,
2005
, “
Fracture Limits of Sheet Metals Under Stretch Bending
,”
Int. J. Mech. Sci.
,
47
(
12
), pp.
1885
1896
.
35.
Li
,
S. H.
,
He
,
J.
,
Zhao
,
Y. X.
,
Wang
,
S. S.
,
Dong
,
L.
, and
Cui
,
R. G.
,
2015
, “
Theoretical Failure Investigation for Sheet Metals Under Hybrid Stretch-Bending Loadings
,”
Int. J. Mech. Sci.
,
104
, pp.
75
90
.
36.
Manopulo
,
N.
,
Hora
,
P.
,
Peters
,
P.
,
Gorji
,
M.
, and
Barlat
,
F.
,
2015
, “
An Extended Modified Maximum Force Criterion for the Prediction of Localized Necking Under Non-Proportional Loading
,”
Int. J. Plast.
,
75
, pp.
189
203
.
37.
Rauch
,
E. F.
,
Gracio
,
J. J.
, and
Barlat
,
F.
,
2007
, “
Work-Hardening Model for Polycrystalline Metals Under Strain Reversal at Large Strains
,”
Acta Mater.
,
55
(
9
), pp.
2939
2948
.
38.
He
,
J.
,
Zeng
,
D.
,
Zhu
,
X. H.
,
Xia
,
Z. C.
, and
Li
,
S. H.
,
2014
, “
Effect of Nonlinear Strain Paths on Forming Limits Under Isotropic and Anisotropic Hardening
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
402
415
.
You do not currently have access to this content.