Machining of titanium alloy is a severe fracture procedure associated with localized adiabatic shearing process. Chip segmentation of titanium alloy is usually characterized with adiabatic shear band (ASB) and localized microfracture evolution process. ASB has been recognized as the precursor of fracture locus due to its sealed high strain intensity. Besides strain intensity, stress triaxiality (pressure-stress states) has also been identified as a significant factor to control fracture process through altering critical loading capacity and critical failure strain. The effect of stress triaxiality on failure strain was traditionally assessed by dynamic split Hopkinson pressure bar (SHPB), quasi-static tests of tension, compression, torsion, and shear for finite element (FE) analysis. However, the stress triaxiality magnitudes introduced by these experiments were much lower than those generated from the high speed machining operation due to the fact that ASBs in chip segmentation are usually involved in much higher strain, high strain rate, high stress, and high temperature associated with phase transformation. However, this aspect of fracture evolution related with stress triaxiality and phase transformation is not well understood in literature. This paper attempts to demonstrate the roles of stress triaxiality and phase transformation in chip segmentation especially in the high speed machining of titanium alloy in FE framework. Johnson–Cook (JC) failure model is calibrated by addressing the characteristics of stress triaxiality and phase transformation associated with high speed machining. This research confirms that the selection of failure criterion parameters incorporated the effects of stress triaxiality and the alpha–beta phase transformation is indispensible to successfully predict fracture behavior during chip segmentation process in the high speed machining of titanium alloys.

Reference

1.
Astakhov
,
V. P.
,
2005
, “
On the Inadequacy of the Single-Shear Plane Model of Chip Formation
,”
Int. J. Mech. Sci.
,
47
(
11
), pp.
1649
1672
.
2.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
.
3.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
.
4.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
,
103
(
1
), pp.
33
51
.
5.
Chen
,
G.
,
Chen
,
C.
,
Yang
,
X.
, and
Guo
,
T.
,
2011
, “
Evidence of Thermoplastic Instability About Segmented Chip Formation Process for Ti-6Al-4V Alloy Based on the Finite-Element Method
,”
Proc. Inst. Mech. Eng. Part C
,
225
(
6
), pp.
1407
1417
.
6.
Xu
,
Y. B.
,
Zhang
,
J. H.
,
Bai
,
Y. L.
, and
Meyers
,
M. A.
,
2008
, “
Shear Localization in Dynamic Deformation: Microstructural Evolution
,”
Metall. Mater. Trans. A
,
39
(
4
), pp.
811
843
.
7.
Walker
,
T. J.
, and
Shaw
,
M. C.
,
1969
,
Advances in Machine Tool Design and Research
,
Pergamon Press
,
Oxford, UK
.
8.
Shaw
,
M. C.
,
Dirke
,
S. O.
,
Smith
,
P. A.
,
Cook
,
N. H.
,
Loewen
,
E. G.
, and
Yang
,
C. T.
,
1954
, “
Machining Titanium
,” U.S. Air Force, MIT Report.
9.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
10.
Atkins
,
A. G.
,
2003
, “
Modeling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. Mech. Sci.
,
45
(
2
), pp.
373
396
.
11.
Nakayama
,
K.
,
Arai
,
M.
, and
Kanda
,
T.
,
1988
, “
Machining Characteristics of Hard Materials
,”
CIRP Ann.-Manuf. Technol.
,
37
(
1
), pp.
89
92
.
12.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy-Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
13.
Shivpuri
,
R.
,
Hua
,
J.
,
Mittal
,
P.
, and
Srivastava
,
A. K.
,
2001
, “
Microstructure-Mechanics Interactions in Modeling Chip Segmentation During Titanium Machining
,”
CIRP Ann.-Manuf. Technol.
,
51
, pp.
85
89
.
14.
Anand
,
L.
,
Dillon
,
O.
,
Place
,
T. A.
, and
Von Turkovich
,
B. F.
,
1990
, “
Report of the NSF Workshop on Localized Plastic Instabilities and Failure Criteria
,”
Int. J. Plast.
,
6
(
2
), pp.
I
IX
.
15.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti-6Al-4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.
16.
Meyers
,
M. A.
,
Nesterenko
,
V. F.
,
LaSalvia
,
J. C.
, and
Xue
,
Q.
,
2001
, “
Shear Localization in Dynamic Deformation of Materials: Microstructural Evolution and Self-Organization
,”
Mater. Sci. Eng. A
,
317
(1–2), pp.
204
225
.
17.
Sutter
,
G.
, and
List
,
G.
,
2013
, “
Very High Speed Cutting of Ti-6Al-4V Titanium Alloy-Change in Morphology and Mechanism of Chip Formation
,”
Int. J. Mach. Tool Manuf.
,
66
, pp.
37
43
.
18.
Bai
,
Y. L.
,
Xue
,
Q.
,
Xu
,
Y. B.
, and
Shen
,
L. T.
,
1994
, “
Characteristics and Microstructure in the Evolution of Shear Localization in Ti-6Al-4V Alloy
,”
Mech. Mater.
,
17
(
2–3
), pp.
155
164
.
19.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
20.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
21.
Gente
,
A.
, and
Hoffmeister
,
H. W.
,
2000
, “
Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds
,”
CIRP Ann.
,
50
, pp.
49
52
.
22.
Ye
,
G. G.
,
Xue
,
S. F.
,
Jiang
,
M. Q.
,
Tong
,
X. H.
, and
Dai
,
L. H.
,
2013
, “
Modeling Periodic Adiabatic Shear Band Evolution During High Speed Machining Ti-6Al-4V Alloy
,”
Int. J. Plast.
,
40
, pp.
39
55
.
23.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1997
, “
Adiabatic Shear Fracture of Titanium Alloy Subjected to High Strain Rate and High Temperature Loadings
,”
J. Phys. IV Fr.
,
7
, pp.
855
860
.
24.
Lee
,
W. S.
, and
Lin
,
C. F.
,
1998
, “
Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded With High Strain Rate Under Various Temperatures
,”
Mater. Sci. Eng. A
,
241
(1–2), pp.
48
59
.
25.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
26.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress States
,”
J. Mech. Phys. Solids
,
24
(2–3), pp.
147
169
.
27.
Hua
,
J.
, and
Shivpuri
,
R.
,
2004
, “
Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
150
(1–2), pp.
124
133
.
28.
Bao
,
Y. B.
,
2005
, “
Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios
,”
Eng. Fract. Mech.
,
72
(
4
), pp.
505
522
.
29.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Experiments
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1768
1786
.
30.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Role of Phase Transformation in Chip Segmentation During High Speed Machining of Dual Phase Titanium Alloys
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3048
3066
.
31.
Liu
,
J.
,
Bai
,
Y. L.
, and
Xu
,
C. Y.
,
2013
, “
Evaluation of Ductile Fracture Models on Finite Element Simulation of Metal Cutting Process
,”
ASME
Paper No. MSEC2013-1070.
32.
HKS
,
2008
, ABAQUS/explicit Analysis User Manual, Version 6.8.1.
33.
2002
, “
Properties at Elevated Temperatures
,” http://www.keytometals.com
34.
2002
, “
SAE AMS T9046, Titanium and Titanium Alloy
,” http://www.keytometals.com
35.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2014
, “
Stress Triaxiality in Chip Segmentation During High Speed Machining of Titanium Alloy
,”
ASME
Paper No. MSEC2014-3915.
36.
Besson
,
J.
,
2010
, “
Continuum Models of Ductile Fracture: A Review
,”
Int. J. Damage Mech.
,
19
(
1
), pp.
3
52
.
37.
Garrison
,
W. M.
, and
Moody
,
N. R.
,
1987
, “
Ductile Fracture
,”
J. Phys. Chem. Solids
,
48
(
11
), pp.
1035
1074
.
38.
Xue
,
Q.
,
Meyers
,
M. A.
, and
Nesterenko
,
V. F.
,
2002
, “
Self-Organization of Shear Bands in Titanium and Ti-6Al-4V alloy
,”
Acta Mater.
,
50
(
3
), pp.
575
596
.
39.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
40.
Hammer
,
J. T.
,
2012
, “
Plastic Deformation and Ductile Fracture of Ti-6Al-4V Under Various Loading Conditions
,” M.S. thesis, The Ohio State University, Columbus, OH.
41.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
42.
Li
,
S. H.
, and
Hou
,
B.
,
2013
, “
Material Behavior Modeling in Machining Simulation of 7075-T651 Aluminum Alloy
,”
ASME J. Eng. Mater. Technol.
,
136
(
1
), p.
011001
.
43.
Bayoumi
,
A. E.
, and
Xie
,
J. Q.
,
1995
, “
Some Metallurgical Aspects of Chip Formation in Cutting Ti-6wt.%Al-4wt.%V alloy
,”
Mater. Sci. Eng. A
,
190
(1–2), pp.
173
180
.
44.
Puerta Velasquez
,
J. D.
,
Bolle
,
B.
,
Chevrier
,
P.
,
Geandier
,
G.
, and
Tidu
,
A.
,
2007
, “
Metallurgical Study on Chips Obtained by High Speed Machining of a Ti-6wt.%Al-4wt.%V Alloy
,”
Mater. Sci. Eng. A
,
452–453
, pp.
469
474
.
45.
Semiatin
,
S. L.
,
Seetharaman
,
V.
, and
Weiss
,
I.
,
1998
, “
Hot Workability of Titanium and Titanium Aluminide Alloys—An Overview
,”
Mater. Sci. Eng. A
,
243
(1–2), pp.
1
24
.
46.
Bao
,
Y. B.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
47.
Bao
,
Y. B.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
.
48.
Kay
,
G.
,
2003
, “
Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson–Cook Material Model
,” Report No. DOT/FAA/AR-03/57.
49.
Semiatin
,
S. L.
,
Montheillet
,
F.
,
Shen
,
G.
, and
Jonas
,
J. J.
,
2002
, “
Self-Consistent Modeling of the Flow Behavior of Wrought Alpha/Beta Titanium Alloys Under Isothermal and Nonisothermal Hot-Working Conditions
,”
Metall. Mater. Trans. A
,
33
(
8
), pp.
2719
2727
.
50.
Matsumoto
,
T.
,
Nishigaki
,
M.
,
Fukuda
,
M.
, and
Nishimura
,
T.
,
1985
,
Titanium: Science and Technology
,
Deutsche Gesellschaft Mellkunde
,
Oberursel, Germany
, pp.
617
623
.
You do not currently have access to this content.