Additive manufacturing (AM) or three-dimensional (3D) printing is a promising technology that enables the direct fabrication of products with complex shapes without extra tooling and fixturing. However, control of 3D shape deformation in AM built products has been a challenging issue due to geometric complexity, product varieties, material phase changing and shrinkage, and interlayer bonding. One viable approach for accuracy control is through compensation of the product design to offset the geometric shape deformation. This work provides an analytical foundation to achieve optimal compensation for high-precision AM. We first present the optimal compensation policy or the optimal amount of compensation for two-dimensional (2D) shape deformation. By analyzing its optimality property, we propose the minimum area deviation (MAD) criterion to offset 2D shape deformation. This result is then generalized by establishing the minimum volume deviation (MVD) criterion and by deriving the optimal amount of compensation for 3D shape deformation. Furthermore, MAD and MVD criteria provide convenient quality measure or quality index for AM built products that facilitate online monitoring and feedback control of shape geometric accuracy.

References

1.
Sachs
,
E.
,
Cima
,
M.
,
Williams
,
P.
,
Brancazio
,
D.
, and
Cornie
,
J.
,
1992
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
ASME J. Manuf. Sci. Eng.
,
114
(
4
), pp.
481
488
.
2.
Beaman
,
J.
,
Bourell
,
D.
, and
Wallace
,
D.
,
2014
, “
Special Issue: Additive Manufacturing (AM) and 3D Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060301
.
3.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
4.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer-Verlag
,
New York.
5.
Hilton
,
P.
, and
Jacobs
,
P.
,
2000
,
Rapid Tooling: Technologies and Industrial Applications
,
CRC Press
, New York.
6.
Melchels
,
F.
,
Feijen
,
J.
, and
Grijpma
,
D.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.
7.
Campbell
,
T.
,
Williams
,
C.
,
Ivanova
,
O.
, and
Garrett
,
B.
,
2011
, “
Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing
,”
Atlantic Council, Washington, DC
.
8.
Storåkers
,
B.
,
Fleck
,
N.
, and
McMeeking
,
R.
,
1999
, “
The Viscoplastic Compaction of Composite Powders
,”
J. Mech. Phys. Solids
,
47
(
4
), pp.
785
815
.
9.
Secondi
,
J.
,
2002
, “
Modeling Powder Compaction From a Pressure-Density Law to Continuum Mechanics
,”
Powder Metall.
,
45
(
3
), pp.
213
217
.
10.
Mori
,
K.
,
Osakada
,
K.
, and
Takaoka
,
S.
,
1996
, “
Simplified Three-Dimensional Simulation of Non-Isothermal Filling in Metal Injection Moulding by the Finite Element Method
,”
Eng. Comput.
,
13
(
2
), pp.
111
121
.
11.
Wang
,
W.
,
Cheah
,
C.
,
Fuh
,
J.
, and
Lu
,
L.
,
1996
, “
Influence of Process Parameters on Stereolithography Part Shrinkage
,”
Mater. Des.
,
17
(
4
), pp.
205
213
.
12.
Zhou
,
J.
,
Herscovici
,
D.
, and
Chen
,
C.
,
2000
, “
Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts
,”
Int. J. Mach. Tools Manuf.
,
40
(
3
), pp.
363
379
.
13.
Sood
,
A.
,
Ohdar
,
R.
, and
Mahapatra
,
S.
,
2009
, “
Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method
,”
Mater. Des.
,
30
(
10
), pp.
4243
4252
.
14.
Wang
,
X.
,
1999
, “
Calibration of Shrinkage and Beam Offset in SLS Process
,”
Rapid Prototyping J.
,
5
(
3
), pp.
129
133
.
15.
Lynn-Charney
,
C.
, and
Rosen
,
D. W.
,
2000
, “
Usage of Accuracy Models in Stereolithography Process Planning
,”
Rapid Prototyping J.
,
6
(
2
), pp.
77
87
.
16.
Tong
,
K.
,
Lehtihet
,
E.
, and
Joshi
,
S.
,
2003
, “
Parametric Error Modeling and Software Error Compensation for Rapid Prototyping
,”
Rapid Prototyping J.
,
9
(
5
), pp.
301
313
.
17.
Tong
,
K.
,
Joshi
,
S.
, and
Lehtihet
,
E.
,
2008
, “
Error Compensation for Fused Deposition Modeling (FDM) Machine by Correcting Slice Files
,”
Rapid Prototyping J.
,
14
(
1
), pp.
4
14
.
18.
Cho
,
W.
,
Sachs
,
E. M.
,
Patrikalakis
,
N. M.
, and
Troxel
,
D. E.
,
2003
, “
A Dithering Algorithm for Local Composition Control With Three-Dimensional Printing
,”
Comput.-Aided Des.
,
35
(
9
), pp.
851
867
.
19.
Zhou
,
C.
,
Chen
,
Y.
, and
Waltz
,
R. A.
,
2009
, “
Optimized Mask Image Projection for Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
131
(
6
), p.
061004
.
20.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for 3D Printing Processes
,”
IIE Trans. Qual. Reliab.
,
47
(
5
), pp.
431
441
.
21.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
22.
Sabbaghi
,
A.
,
Dasgupta
,
T.
,
Huang
,
Q.
, and
Zhang
,
J.
,
2014
, “
Inference for Deformation and Interference in 3D Printing
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1395
1415
.
23.
Moroni
,
G.
,
Syam
,
W. P.
, and
Petrò
,
S.
,
2014
, “
Towards Early Estimation of Part Accuracy in Additive Manufacturing
,”
Proc. CIRP
,
21
, pp.
300
305
.
24.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
.
25.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
,
2002
, “
Improving Solid Freeform Fabrication by Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part B
,
216
(
9
), pp.
1253
1264
.
26.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
27.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
28.
Heralic
,
A.
,
Christiansson
,
A.-K.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.
29.
Cohen
,
D. L.
, and
Lipson
,
H.
,
2010
, “
Geometric Feedback Control of Discrete-Deposition SFF Systems
,”
Rapid Prototyping J.
,
16
(
5
), pp.
377
393
.
30.
Lu
,
L.
,
Zheng
,
J.
, and
Mishra
,
S.
,
2015
, “
A Layer-to-Layer Model and Feedback Control of Ink-Jet 3-D Printing
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1056
1068
.
31.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
32.
Luan
,
H.
, and
Huang
,
Q.
,
2015
, “
Predictive Modeling of In-Plane Geometric Deviation for 3D Printed Freeform Products
,”
IEEE International Conference on Automation Science and Engineering
(
CASE 2015
), Gothenberg, Sweden, Aug. 24–28, pp.
912
917
.
33.
Luan
,
H.
, and
Huang
,
Q.
, “
Prescriptive Modeling and Compensation of In-Plane Geometric Deviations for 3D Printed Freeform Products
,”
IEEE Trans. Autom. Sci. Eng.
(in press).
34.
Xu
,
L.
,
Huang
,
Q.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2013
, “
Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing
,”
ASME
Paper No. IMECE2013-66329.
35.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Predictive Modeling of Geometric Deviations of 3D Printed Products—A Unified Modeling Approach for Cylindrical and Polygon Shapes
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Taipei, Taiwan, Aug. 18–22, pp.
25
30
.
36.
Song
,
S.
,
Wang
,
A.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2014
, “
Shape Deviation Modeling for Fused Deposition Modeling Processes
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Taipei, Taiwan, Aug. 18–22, pp.
758
763
.
37.
Jin
,
Y.
,
Qin
,
S.
, and
Huang
,
Q.
,
2015
, “
Out-of-Plane Geometric Error Prediction for Additive Manufacturing
,”
IEEE International Conference on Automation Science and Engineering
(
CASE 2015
), Gothenberg, Sweden, Aug. 24–28, pp.
918
923
.
38.
Wang
,
H.
,
Huang
,
Q.
, and
Katz
,
R.
,
2005
, “
Multi-Operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
512
521
.
39.
Wang
,
H.
, and
Huang
,
Q.
,
2006
, “
Error Cancellation Modeling and Its Application in Machining Process Control
,”
IIE Trans. Qual. Reliab.
,
38
(4), pp.
379
388
.
40.
Wang
,
H.
, and
Huang
,
Q.
,
2007
, “
Using Error Equivalence Concept to Automatically Adjust Discrete Manufacturing Processes for Dimensional Variation Control
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
644
652
.
41.
Jacobs
,
P.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
SME
,
Dearborn, MI
.
You do not currently have access to this content.