The electrochemical buffing (ECB) process primarily works on the principle of preferential dissolution by coupling of electrical, chemical, and mechanical actions. ECB is used to buff clean and hygienic nanoscale surface finish of high-purity components. Despite being well known, the process mechanism has not been discussed adequately in the literature, which makes process control and its use difficult. This work explores the various material removal mechanisms through numerical simulations to better understand and control the ECB process. The numerical results are found to match reasonably well with the experimental data. It is found from the simulation results that the flux of species generated is dominated by current density and interelectrode gap, whereas flow of electrolyte and rotation speed of buff-head primarily influence their migration. The simulation model also infers that convective flux contributes of order of 102 over to diffusion flux in species migration, whereas electrophoretic flux does not have a significant contribution.

References

1.
Tailor
,
P. B.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2013
, “
Evolution of Electrochemical Finishing Process Through Cross Innovations and Modeling
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
15
36
.
2.
Lee
,
S.-J.
,
Lee
,
Y.-M.
, and
Du
,
M.-F.
,
2003
, “
The Polishing Mechanism of Electrochemical Mechanical Polishing Technology
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
280
286
.
3.
Landolt
,
D.
,
Chauvy
,
P. F.
, and
Zinger
,
O.
,
2003
, “
Electrochemical Micromachining, Polishing Surface Structure of Metals: Fundamental Aspects and New Developments
,”
Electrochim. Acta
,
48
(
20–22
), pp.
3185
3201
.
4.
Gao
,
F.
, and
Liang
,
H.
,
2009
, “
Material Removal Mechanisms in Electrochemical–Mechanical Polishing of Tantalum
,”
Electrochim. Acta
,
54
(
27
), pp.
6808
6815
.
5.
Landolt
,
D.
,
1987
, “
Review Article: Fundamental Aspects of Electropolishing
,”
Electrochim. Acta
,
32
(
1
), pp.
1
11
.
6.
Lee
,
S.-J.
, and
Lai
,
J.-J.
,
2003
, “
The Effect of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
206
210
.
7.
Lee
,
E.-S.
,
2000
, “
Machining Characteristics of the Electropolishing of Stainless Steel (STS 316L)
,”
Int. J. Adv. Manuf. Technol.
,
16
(
8
), pp.
591
599
.
8.
Brant
,
A. M.
,
Sunaram
,
M. M.
, and
Kamaraj
,
A. B.
,
2015
, “
Finite Element Simulation of Localized Electrochemical Deposition for Maskless Electrochemical Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011018
.
9.
Kao
,
P. S.
, and
Hocheng
,
H.
,
2003
, “
Optimization of Electrochemical Polishing of Stainless Steel by Grey Relational Analysis
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
255
259
.
10.
Park
,
J. W.
, and
Lee
,
D. W.
,
2009
, “
Pulse Electrochemical Polishing for Microrecesses Based on a Coulostatic Analysis
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7–8
), pp.
742
748
.
11.
Galanin
,
S. I.
,
Galanin
,
A. S.
, and
Kalinnikov
,
I. V.
,
2009
, “
Features of Current Distribution With the Use of Titanium Suspensions for the Electrochemical Polishing of Gold by Bipolar Current Pulses
,”
Surf. Eng. Appl. Electrochem.
,
45
(
3
), pp.
199
205
.
12.
Jang
,
K.-I.
,
Seok
,
J.
,
Min
,
B.-K.
, and
Lee
,
S. J.
,
2010
, “
An Electrochemomechanical Polishing Process Using Magnetorheological Fluid
,”
Int. J. Mach. Tools Manuf.
,
50
(
10
), pp.
869
881
.
13.
Tam
,
S. C.
,
Loh
,
N. H.
, and
Miyazawa
,
S.
,
1989
, “
Optimization of the ECM-Abrasive Polishing of Mild Steel Using Response Surface Methodology
,”
J. Mech. Work. Technol.
,
19
(
1
), pp.
109
117
.
14.
Ma
,
N.
,
Xu
,
W.
,
Wang
,
X.
, and
Tao
,
B.
,
2010
, “
Pulse Electrochemical Finishing: Modeling and Experiment
,”
J. Mater. Process. Technol.
,
210
(
6–7
), pp.
852
857
.
15.
Neville
,
A.
, and
Hu
,
X.
,
2001
, “
Mechanical and Electrochemical Interactions During Liquid-Solid Impingement on High-Alloy Stainless Steels
,”
Wear
,
251
(
1–12
), pp.
1284
1294
.
16.
Zelinsky
,
A. G.
, and
Pirogov
,
B. Ya.
,
2009
, “
Electrolysis in a Closed Electrochemical Cell With a Small Inter-Electrode Distance. Metal Dissolution/Deposition in Plain Electrolytes
,”
Electrochim. Acta
,
54
(
26
), pp.
6707
6712
.
17.
Awad
,
A. M.
,
Ghany
,
N. A. A.
, and
Dahy
,
T. M.
,
2010
, “
Removal of Tarnishing and Roughness of Copper Surface by Electropolishing Treatment
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4370
4375
.
18.
Chen
,
S. C.
,
Tu
,
G. C.
, and
Huang
,
C. A.
,
2005
, “
The Electrochemical Polishing Behavior of Porous Austenitic Stainless Steel (AISI 316L) in Phosphoric-Sulfuric Mixed Acids
,”
Surf. Coat. Technol.
,
200
(
7
), pp.
2065
2071
.
19.
Huang
,
C. A.
, and
Hsu
,
C. C.
,
2007
, “
The Electrochemical Polishing Behavior of Duplex Stainless Steel (SAF 2205) in Phosphoric-Sulfuric Mixed Acids
,”
Int. J. Adv. Manuf. Technol.
,
34
(
9–10
), pp.
904
910
.
20.
Huang
,
C. A.
,
Lin
,
W.
, and
Lin
,
S. C.
,
2003
, “
The Electrochemical Polishing Behaviour of P/M High-Speed Steel (ASP 23) in Perchloric–Acetic Mixed Acids
,”
Corros. Sci.
,
45
(
11
), pp.
2627
2638
.
21.
Huang
,
C. A.
,
Chen
,
Y. C.
, and
Chang
,
J. H.
,
2008
, “
The Electrochemical Polishing Behavior of the Inconel 718 Alloy in Perchloric–Acetic Mixed Acids
,”
Corros. Sci.
,
50
(
2
), pp.
480
489
.
22.
Nishiwaki
,
M.
,
Hayano
,
H.
,
Kato
,
S.
,
Saeki
,
T.
,
Sawabe
,
M.
, and
Tyagi
,
P. V.
,
2010
, “
Surface Study on Niobium Stain After Electro-Polishing for Super-Conducting RF Cavity
,”
IPAC’10
,
Kyoto, Japan
, pp.
2941
2943
.
23.
Khum
,
N. W.
,
Sumption
,
M.
, and
Franke
,
G. S.
,
2013
, “
Smoothening of Niobium by Electropolishing
,”
J. Appl. Electrochem.
,
43
(
8
), pp.
829
883
.
24.
Kato
,
S.
,
Nishiwaki
,
M.
,
Tyagi
,
P. V.
,
Azuma
,
S.
, and
Yamamoto
,
F.
,
2010
, “
Application of Electrochemical Buffing Onto Niobium SRF Cavity Surface
,”
1st International Particle Accelerator Conference
(
IPAC’10
),
Kyoto, Japan
, pp.
2929
2931
.
25.
Okawa
,
S.
,
Hossain
,
A.
,
Kanatani
,
M.
,
Watanabe
,
K.
, and
Miyakawa
,
K.
,
2004
, “
Surface Properties of Electrochemically Buffed Titanium Casting
,”
Dent. Mater. J.
,
23
(
4
), pp.
504
511
.
26.
Wang
,
B.
,
Liu
,
Z.
,
Su
,
G.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials With Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
27.
Saito
,
Y.
,
Horikoshi
,
G.
,
Takahashi
,
R.
, and
Fkushima
,
M.
,
2001
, “
Operational Status of the Vacuum System of the 300 m Gravitational Wave Laser Interferometer, TAMA300
,”
Vacuum
,
60
(
1–2
), pp.
3
8
.
28.
Kobayashi
,
S.
,
1997
, “
Recent Experiments on Vacuum Breakdown of Oxygen-Free Copper Electrodes
,”
IEEE Trans. Dielectr. Electr. Insul.
,
4
(
6
), pp.
841
847
.
29.
Kasahara
,
A.
,
Goto
,
M.
,
Tosa
,
M.
, and
Yoshihara
,
K.
,
2003
, “
Measurement of Friction Force Electrochemical Buffing and Chemical Polishing to Decrease Sliding Friction in High Vacuum With Control of Surface Nano Roughness
,”
J. Electroanal. Chem.
,
559
, pp.
45
48
.
30.
Saeki
,
H.
,
Ikeda
,
J.
,
Kohzu
,
I.
, and
Ishimaru
,
H.
,
1999
, “
The Durability of Ballscrews for Ultrahigh Vacuum
,”
J. Vac. Sci. Technol.
,
A8
(
4
), pp.
3360
3362
.
31.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
32.
Grzesik
,
W.
, and
Zak
,
K.
,
2014
, “
Characterization of Surface Integrity Produced by Sequential Dry Hard Turning and Ball Burnishing Operations
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031017
.
33.
Saito
,
Y.
,
Ogawa
,
Y.
,
Horikoshi
,
G.
,
Matuda
,
N.
,
Takahashi
,
R.
, and
Fukushima
,
M.
,
1999
, “
Vacuum System of the 300 m Gravitational Wave Laser Interferometer in Japan (TAMA 300)
,”
Vacuum
,
53
(
1–2
), pp.
353
356
.
34.
Satio
,
Y.
,
2003
, “
Vacuum System of High-Energy Accelerators: Electrical Breakdown in Vacuum
,”
Rev. Bras. Apl. Vacuo
,
22
(
2
), pp.
39
44
.
35.
Tsui
,
H. P.
,
Yan
,
B. H.
,
Wu
,
K. L.
, and
Wu
,
W. W.
,
2007
, “
Optimizing Electrochemical Buffing Control Parameters for Surface Finishing of Ultrahigh Purity Components
,”
Adv. Mater. Res.
,
24–25
, pp.
109
116
.
36.
Hoshino
,
S.
, and
RO
,
B.
,
1971
, “
Working Ability and Brightness in Electrochemical Buffing
,”
Metal Surf. Technol.
,
22
(
6
), pp.
290
294
(in Japanese).
37.
Lohrengel
,
M. M.
,
2005
, “
Pulsed Electrochemical Machining of Iron in NaNO3: Fundamentals and New Aspects
,”
Mater. Manuf. Process.
,
20
(
1
), pp.
1
8
.
38.
Lin
,
T.-R.
, and
Su
,
C.-R.
,
2008
, “
Experimental Study of Lapping and Electropolishing of Tungsten Carbides
,”
Int. J. Adv. Manuf. Technol.
,
36
(
7
), pp.
715
723
.
39.
Han
,
S.-J.
,
Lee
,
W.-S.
, and
Seo
,
Y.-J.
,
2008
, “
Voltage-Dependent Electrochemical Removal of Copper in KNO3 Electrolytes for Electrochemical-Mechanical Polishing Applications
,”
J. Korean Phys. Soc.
,
53
(
5
), pp.
2401
2406
.
40.
Sundaram
,
M. M.
,
Kamaraj
,
A. B.
, and
Kumar
,
V. S.
,
2015
, “
Mask-Less Electrochemical Additive Manufacturing: A Feasibility Study
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021006
.
41.
Wang
,
J.
,
2000
,
Analytical Electrochemistry
, 2nd ed.,
Wiley-VCH
,
Hoboken, NJ
.
42.
Lu
,
J.
,
Li
,
D.-J.
,
Zhang
,
L.-L.
, and
Wang
,
Y.-X.
,
2007
, “
Numerical Simulation of Salt Water Electrolysis in Parallel-Plate Electrode Channel Under Forced Convection
,”
Electrochim. Acta
,
53
(
2
), pp.
768
776
.
43.
Zamin
,
M.
,
Mayer
,
P.
, and
Murthy
,
M. K.
,
1977
, “
On the Electropolishing of Molybdenum
,”
J. Electrochem. Soc.
,
124
(
10
), pp.
1558
1562
.
44.
Tailor
,
P. B.
,
Thakur
,
P. S.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2010
, “
Experimental Investigation on Electro-Chemical Buffing
,”
7th International Workshop on Microfactories (IWMF 2010)
,
Daejeon, Korea
, pp.
35
37
.
45.
Tailor
,
P. B.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2015
, “
Parametric Understanding of Electro-Chemical Buffing (ECB) Using Current–Voltage Characterization
,”
Mach. Sci. Technol.
,
19
(
3
), pp.
440
459
.
46.
Tailor
,
P. B.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2015
, “
Numerical Modeling of Passive Layer Formation and Stabilization in Electrochemical Polishing Process
,”
J. Manuf. Process.
,
18
, pp.
107
116
.
You do not currently have access to this content.