Significant improvements in deformation resistance and ductility of metals are observed in the electrically assisted forming (EAF) process. Both electroplastic effect (EPE) induced by electric current and thermal effect associated with Joule heating have been proposed to explain the phenomenon. However, there are still arguments in the contribution of the EPE in EAF process. In this paper, both electrically assisted tension tests (EAT) and thermally assisted tension tests (TAT) were conducted on SS304 specimens at the same temperature. The existence of EPE is investigated, and the contribution of EPE is also distinguished with thermal effect numerically by considering the initial yield stress, dislocation hardening, and martensite phase transformation. It is shown when the temperature is around 34 °C, the electric current of 50 A/mm2 in EAT induces additional stress reduction of 16% in the short-range internal stress (effective stress) involved in the initial yield stress and volume reduction of 45.2% in martensite formation compared with results in TAT. However, the effect is not obvious for the cases of 100 A/mm2 and 150 A/mm2 when the temperature is above 100 °C. By comparing the storage coefficient and recovery coefficient of dislocation in EAT and TAT, it indicates that electric current has no additional activation effect on dislocation movement of SS304.

References

1.
Mai
,
J.
,
Peng
,
L.
,
Lai
,
X.
, and
Lin
,
Z.
,
2013
, “
Electrical-Assisted Embossing Process for Fabrication of Micro-Channels on 316L Stainless Steel Plate
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
314
321
.
2.
Green
,
C. R.
,
McNeal
,
T. A.
, and
Roth
,
J. T.
,
2009
, “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,” 37th North American Manufacturing Research Conference, Greenville, SC, May 19–22, Transactions of the North American Manufacturing Research Institution of SME, Curran Associates, Red Hook, NY, Vol. 37, pp. 403–410.
3.
Xu
,
Z.
,
Tang
,
G.
,
Tian
,
S.
,
Ding
,
F.
, and
Tian
,
H.
,
2007
, “
Research of Electroplastic Rolling of AZ31 Mg Alloy Strip
,”
J. Mater. Process. Technol.
,
182
(
1–3
), pp.
128
133
.
4.
Mai
,
J.
,
Peng
,
L.
,
Lin
,
Z.
, and
Lai
,
X.
,
2011
, “
Experimental Study of Electrical Resistivity and Flow Stress of Stainless Steel 316L in Electroplastic Deformation
,”
Mater. Sci. Eng. A
,
528
(
10–11
), pp.
3539
3544
.
5.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
.
6.
Troitskii
,
O. A.
,
1969
, “
Electromechanical Effect in Metals
,” ZhETF Pis. Red.,
10
(
1
), pp.
18
22
.
7.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
276
287
.
8.
Molotskii
,
M.
, and
Fleurov
,
V.
,
1995
, “
Magnetic Effects in Electroplasticity of Metals
,”
Phys. Rev. B
,
52
(
22
), pp.
15829
15834
.
9.
Troitskii
,
O. A.
,
1984
, “
The Electroplastic Effect in Metals
,”
Strength Mater.
,
16
(
2
), pp.
277
281
.
10.
Troitskii
,
O.
,
1976
, “
Electroplastic Deformation of Metal
,” Strength Mater.,
8
(
12
), pp.
1466
1471
.
11.
Cao
,
W.-D.
,
Sprecher
,
A.
, and
Conrad
,
H.
,
1989
, “
Effect of Strain Rate on the Electroplastic Effect in Nb
,”
Scr. Metall.
,
23
(
1
), pp.
151
155
.
12.
Okazaki
,
K.
,
Kagawa
,
M.
, and
Conrad
,
H.
,
1979
, “
Effects of Strain Rate, Temperature and Interstitial Content on the Electroplastic Effect in Titanium
,”
Scr. Metall.
,
13
(
6
), pp.
473
477
.
13.
Varma
,
S.
, and
Cornwell
,
L.
,
1979
, “
The Electroplastic Effect in Aluminum
,”
Scr. Metall.
,
13
(
8
), pp.
733
738
.
14.
Stolyarov
,
V. V.
,
2013
, “
Influence of Pulse Current on Deformation Behavior During Rolling and Tension of Ti–Ni Alloys
,”
J. Alloys Compd.
,
577
, pp.
S274
S276
.
15.
Jiang
,
Y.
,
Tang
,
G.
,
Shek
,
C.
,
Xie
,
J.
,
Xu
,
Z.
, and
Zhang
,
Z.
,
2012
, “
Mechanism of Electropulsing Induced Recrystallization in a Cold-Rolled Mg–9Al–1Zn Alloy
,”
J. Alloys Compd.
,
536
, pp.
94
105
.
16.
Kim
,
M.-J.
,
Lee
,
K.
,
Oh
,
K. H.
,
Choi
,
I.-S.
,
Yu
,
H.-H.
,
Hong
,
S.-T.
, and
Han
,
H. N.
,
2014
, “
Electric Current-Induced Annealing During Uniaxial Tension of Aluminum Alloy
,”
Scr. Mater.
,
75
, pp.
58
61
.
17.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2013
, “
Experimental Study of Electro-Plastic Effect on Advanced High Strength Steels
,”
Mater. Sci. Eng. A
,
582
, pp.
211
218
.
18.
Guan
,
L.
,
Tang
,
G.
,
Jiang
,
Y.
, and
Chu
,
P. K.
,
2009
, “
Texture Evolution in Cold-Rolled AZ31 Magnesium Alloy During Electropulsing Treatment
,”
J. Alloys Compd.
,
487
(
1–2
), pp.
309
313
.
19.
Xu
,
Q.
,
Tang
,
G.
,
Jiang
,
Y.
,
Hu
,
G.
, and
Zhu
,
Y.
,
2011
, “
Accumulation and Annihilation Effects of Electropulsing on Dynamic Recrystallization in Magnesium Alloy
,”
Mater. Sci. Eng. A
,
528
(
7–8
), pp.
3249
3252
.
20.
Hu
,
G.
,
Zhu
,
Y.
,
Tang
,
G.
,
Shek
,
C.
, and
Liu
,
J.
,
2011
, “
Effect of Electropulsing on Recrystallization and Mechanical Properties of Silicon Steel Strips
,”
J. Mater. Sci. Technol.
,
27
(
11
), pp.
1034
1038
.
21.
Liu
,
W. B.
,
Wen
,
Y. H.
,
Li
,
N.
, and
Yang
,
S. Z.
,
2009
, “
Effects of Electropulsing Treatment on Stress-Induced ɛ Martensite Transformation of a Pre-Deformed Fe17Mn5Si8Cr5Ni0.5NbC Alloy
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
114
116
.
22.
To
,
S.
,
Zhu
,
Y. H.
,
Lee
,
W. B.
,
Liu
,
X. M.
,
Jiang
,
Y. B.
, and
Tang
,
G. Y.
,
2009
, “
Effects of Current Density on Electropulsing-Induced Phase Transformations in a Zn–Al Based Alloy
,”
Appl. Phys. A
,
96
(
4
), pp.
939
944
.
23.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of dc on the Formability of Ti–6Al–4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
.
24.
Kinsey
,
B.
,
Cullen
,
G.
,
Jordan
,
A.
, and
Mates
,
S.
,
2013
, “
Investigation of Electroplastic Effect at High Deformation Rates for 304SS and Ti–6Al–4V
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
279
282
.
25.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041003
.
26.
Magargee
,
J.
,
Fan
,
R.
, and
Cao
,
J.
,
2013
, “
Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061022
.
27.
Bilyk
,
S. R.
,
Ramesh
,
K. T.
, and
Wright
,
T. W.
,
2005
, “
Finite Deformations of Metal Cylinders Subjected to Electromagnetic Fields and Mechanical Forces
,”
J. Mech. Phys. Solids
,
53
(
3
), pp.
525
544
.
28.
Gallo
,
F.
,
Satapathy
,
S.
, and
Ravi-Chandar
,
K.
,
2012
, “
Plastic Deformation in Electrical Conductors Subjected to Short-Duration Current Pulses
,”
Mech. Mater.
,
55
, pp.
146
162
.
29.
Standard
,
A.
, 2009,
E8/E8M, 2009. Standard Test Methods for Tension Testing of Metallic Materials
, ASTM international, West Conshohocken PA.
30.
Peng
,
L.
,
Mai
,
J.
,
Jiang
,
T.
,
Lai
,
X.
, and
Lin
,
Z.
,
2014
, “
Experimental Investigation of Tensile Properties of SS316L and Fabrication of Micro/Mesochannel Features by Electrical-Assisted Embossing Process
,”
J. Micro Nano-Manuf.
,
2
(
2
), p.
021002
.
31.
Timsit
,
R. S.
,
1981
, “
Remarks on Recent Experimental Observations of the Electroplastic Effect
,” Scr. Metall.,
15
(
4
), pp.
461
464
.
32.
Zhu
,
Y. H.
,
To
,
S.
,
Lee
,
W. B.
,
Liu
,
X. M.
,
Jiang
,
Y. B.
, and
Tang
,
G. Y.
,
2009
, “
Effects of Dynamic Electropulsing on Microstructure and Elongation of a Zn–Al Alloy
,”
Mater. Sci. Eng. A
,
501
(
1–2
), pp.
125
132
.
33.
Evans
,
A. G.
, and
Rawlings
,
R. D.
,
1969
, “
The Thermally Activated Deformation of Crystalline Materials
,”
Phys. Status Solidi (B)
,
34
(
1
), pp.
9
31
.
34.
Sieurin
,
H.
,
Zander
,
J.
, and
Sandström
,
R.
,
2006
, “
Modelling Solid Solution Hardening in Stainless Steels
,”
Mater. Sci. Eng. A
,
415
(
1
), pp.
66
71
.
35.
Nadai
,
A.
,
1937
, “
Plastic Behavior of Metals in the Strain-Hardening Range: Part I
,”
J. Appl. Phys.
,
8
(
3
), pp.
205
213
.
36.
Shin
,
H. C.
,
Ha
,
T. K.
, and
Chang
,
Y. W.
,
2001
, “
Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel
,”
Scr. Mater.
,
45
(
7
), pp.
823
829
.
37.
Ledbetter
,
H. M.
,
Weston
,
W. F.
, and
Naimon
,
E. R.
,
1975
, “
Low-Temperature Elastic Properties of Four Austenitic Stainless Steels
,”
J. Appl. Phys.
,
46
(
9
), pp.
3855
3860
.
38.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical
,” P. Roy. Soc. Lond. A. Mat.,
145
(
855
), pp.
362
387
.
39.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
.
40.
Mecking
,
H.
,
Nicklas
,
B.
,
Zarubova
,
N.
, and
Kocks
,
U. F.
,
1986
, “
A “Universal” Temperature Scale for Plastic Flow
,”
Acta Metall.
,
34
(
3
), pp.
527
535
.
41.
Durlu
,
T. N.
,
1978
, “
High Voltage Transmission Electron Microscopy Studies of Strain-Induced Martensite in Fe-Ni-C Alloys
,”
Acta Metall.
,
26
(
12
), pp.
1855
1861
.
42.
Tang
,
G.
,
Zhang
,
J.
,
Yan
,
Y.
,
Zhou
,
H.
, and
Fang
,
W.
,
2003
, “
The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire
,”
J. Mater. Process. Technol.
,
137
(
1–3
), pp.
96
99
.
43.
Fahr
,
D.
,
1971
, “
Stress-and Strain-Induced Formation of Martensite and Its Effects on Strength and Ductility of Metastable Austenitic Stainless Steels
,”
Metall. Trans.
,
2
(
7
), pp.
1883
1892
.
44.
Jacques
,
P. J.
,
Furnémont
,
Q.
,
Lani
,
F.
,
Pardoen
,
T.
, and
Delannay
,
F.
,
2007
, “
Multiscale Mechanics of TRIP-Assisted Multiphase Steels: I. Characterization and Mechanical Testing
,”
Acta Mater.
,
55
(
11
), pp.
3681
3693
.
45.
Tamura
,
I.
,
1982
, “
Deformation-Induced Martensitic Transformation and Transformation-Induced Plasticity in Steels
,”
Met. Sci.
,
16
(
5
), pp.
245
253
.
46.
Olson
,
G. B.
, and
Cohen
,
M.
,
1975
, “
Kinetics of Strain-Induced Martensitic Nucleation
,”
Metall. Trans. A
,
6
(
4
), pp.
791
795
.
You do not currently have access to this content.