The ease of entering a car is one of the important ergonomic factors that car manufacturers consider during the process of car design. This has motivated many researchers to investigate factors that affect discomfort during ingress. The patterns of motion during ingress may be related to discomfort, but the analysis of motion is challenging. In this paper, a modeling framework is proposed to use the motions of body landmarks to predict subjectively reported discomfort during ingress. Foot trajectories are used to identify a set of trials with a consistent right-leg-first strategy. The trajectories from 20 landmarks on the limbs and torso are parameterized using B-spline basis functions. Two group selection methods, group non-negative garrote (GNNG) and stepwise group selection (SGS), are used to filter and identify the trajectories that are important for prediction. Finally, a classification and prediction model is built using support vector machine (SVM). The performance of the proposed framework is then evaluated against simpler, more common prediction models.

References

1.
Wegner
,
D.
,
Chiang
,
J.
,
Kemmer
,
B.
,
Lamkull
,
D.
, and
Roll
,
R.
,
2007
, “
Digital Human Modeling Requirements and Standardization
,”
SAE
Technical Paper No. 2007-01-2498.
2.
Bottoms
,
D.
,
1983
, “
Design Guidelines for Operator Entry–Exit Systems on Mobile Equipment
,”
Appl. Ergon.
,
14
(
2
), pp.
83
90
.
3.
Petzäll
,
J.
,
1995
, “
The Design of Entrances of Taxis for Elderly and Disabled Passengers
,”
Appl. Ergon.
,
26
(
5
), pp.
343
352
.
4.
Kim
,
S. H.
, and
Lee
,
K.
,
2009
, “
Development of Discomfort Evaluation Method for Car Ingress Motion
,”
Int. J. Automot. Technol.
,
10
(
5
), pp.
619
627
.
5.
Giacomin
,
J.
, and
Quattrocolo
,
S.
,
1997
, “
An Analysis of Human Comfort When Entering and Exiting the Rear Seat of an Automobile
,”
Appl. Ergon.
,
28
(
5–6
), pp.
397
406
.
6.
Causse
,
J.
,
Wang
,
X.
, and
Denninger
,
L.
,
2012
, “
An Experimental Investigation on the Requirement of Roof Height and Sill Width for Car Ingress and Egress
,”
Ergonomics
,
55
(
12
), pp.
1596
1611
.
7.
Dufour
,
F.
, and
Wang
,
X.
,
2005
, “
Discomfort Assessment of Car Ingress/Egress Motions Using the Concept of Neutral Movement
,”
SAE
International Paper No. 2005-01-2706.
8.
Bellman
,
R.
,
1961
,
Adaptive Control Processes: A Guided Tour
,
Princeton University Press
,
Princeton, NJ
.
9.
Donoho
,
D. L.
,
2000
, “
High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,”
AIDE-Memoire of the Lecture in AMS Conference Math Challenges of 21st Century
.
10.
Fan
,
J.
, and
Li
,
R.
,
2006
, “
Statistical Challenges With High Dimensionality: Feature Selection in Knowledge Discovery
,”
International Congress of Mathematicians
,
Madrid, Spain
.
11.
Vapnik
,
V. N.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York
.
12.
Jian
,
A. K.
,
Duin
,
R. P. W.
, and
Mao
,
J.
,
2000
, “
Statistical Pattern Recognition: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
1
), pp.
4
37
.
13.
Fan
,
J.
, and
Fan
,
Y.
,
2008
, “
High-Dimensional Classification Using Features Annealed Independence Rules
,”
Ann. Stat.
,
36
(
6
), pp.
2605
2637
.
14.
Ramsay
,
J. O.
, and
Li
,
X.
,
1998
, “
Curve Registration
,”
J. R. Stat. Soc.: Ser. B
,
60
(
2
), pp.
351
363
.
15.
Chateauroux
,
E.
,
2009
, “
Analyse du Mouvement d'accessibilité au Poste de Conduite d'une Automobile en vue de la Simulation—Cas Particulier des Personnes Âgées
,” Ph.D. thesis, INSA Lyon, France.
16.
Ramsay
,
J. O.
, and
Silverman
,
B. W.
,
2005
,
Functional Data Analysis
,
Springer
,
Berlin, Germany
.
17.
Kohavi
,
R.
, and
John
,
G. H.
,
1997
, “
Wrappers for Feature Subset Selection
,”
Artif. Intell.
,
97
(
1–2
), pp.
273
324
.
18.
Davis
,
P. J.
,
1975
,
Interpolation and Approximation
,
Dover
,
New York
.
19.
De Boor
,
C.
,
2001
,
A Practical Guide to Splines
,
Springer
,
Berlin, Germany
.
20.
Cardot
,
H.
,
Crambes
,
C.
, and
Sarda
,
P.
,
2004
, “
Spline Estimation of Conditional Quantiles for Functional Covariates
,”
C. R. Math.
,
339
(
2
), pp.
141
144
.
21.
Sambhav
,
K.
,
Tandon
,
P.
, and
Dhande
,
S. G.
,
2014
, “
Force Modeling for Generic Profile of Drills
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041019
.
22.
Yuan
,
M.
, and
Lin
,
Y.
,
2006
, “
Model Selection and Estimation in Regression With Grouped Variable
,”
J. R. Stat. Soc.: Ser. B
,
68
(
1
), pp.
49
67
.
23.
Paynabar
,
K.
,
Jin
,
J.
, and
Reed
,
M.
,
2015
, “
Informative Sensor and Feature Selection Via Hierarchical Non-Negative Garrote
,”
Technometrics
,
57
(
4
), pp.
514
523
.
24.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2008
,
The Elements of Statistical Learning
,
Springer
,
Berlin, Germany
.
25.
Hocking
,
R. R.
,
1976
, “
The Analysis and Selection of Variables in Linear Regression
,”
Biometrics
,
32
(
1
), pp.
1
49
.
26.
Draper
,
N.
, and
Smith
,
H.
,
1998
,
Applied Regression Analysis
,
Wiley
,
New York
.
27.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
28.
Cherkassky
,
V.
, and
Ma
,
Y.
,
2004
, “
Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
,”
Neural Networks
,
17
(
1
), pp.
113
126
.
29.
Pal
,
M.
, and
Foody
,
G. M.
,
2010
, “
Feature Selection for Classification of Hyperspectral Data by SVM
,”
IEEE Trans. Geosci. Remote Sens.
,
48
(
5
), pp.
2297
2307
.
30.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2015
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
.
31.
Boser
,
B. E.
,
Guyon
,
I. M.
, and
Vapnik
,
V.
,
1992
, “
A Training Algorithm for Optimal Margin Classifiers
,” Annual
ACM
Workshop on COLT
, pp.
144
152
.
32.
Matheny
,
M. E.
,
Resnic
,
F. S.
,
Arora
,
N.
, and
Ohno-Machado
,
L.
,
2007
, “
Effects of SVM Parameter Optimization on Discrimination and Calibration for Post-Procedural PCI Mortality
,”
J. Biomed. Inf.
,
40
(
6
), pp.
688
697
.
33.
Freund
,
Y.
, and
Schapire
,
R. E.
,
1997
, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
,
55
(
1
), pp.
119
139
.
34.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
35.
Cheung
,
K. M.
,
Baker
,
S.
, and
Kanade
,
T.
,
2005
, “
T. Shape-From-Silhouette Across Time. Part II: Applications to Human Modeling and Markerless Motion Tracking
,”
Int. J. Comput. Vision
,
63
(
3
), pp.
225
245
.
36.
Corazza
,
S.
,
Mündermann
,
L.
,
Chaudhari
,
A. M.
,
Demattio
,
T.
,
Cobelli
,
C.
, and
Andriacchi
,
T. P.
,
2006
, “
A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
1019
1029
.
You do not currently have access to this content.