Aluminum foams are generally very attractive because of their ability of combining different properties such as strength, light weight, thermal, and acoustic insulation. These materials, however, are typically brittle under mechanical forming, and this severely limits their use. Recent studies have shown that laser forming is an effective way for foam panel forming. In this paper, the laser formability of Al–Si closed-cell foam through experiments and numerical simulations was investigated. The bending angle as a function of the number of passes at different laser power and scan velocity values was investigated for large- and small-pore foams. In the finite element analysis, both effective-property and cellular models were considered for the closed-cell foam. Multiscan laser forming was also carried out and simulated to study the accumulative effect on the final bending angle and stress states. The maximum von Mises stress in the scanning section was on the order of 0.8 MPa, which was lower than the yield strength of the closed-cell foam material. This paper further discussed the reasonableness and applicability of the two models.

References

1.
Fuganti
,
A.
,
Lorenzi
,
L.
,
Hanssen
,
A. G.
, and
Langseth
,
M.
,
2000
, “
Aluminium Foam for Automotive Applications
,”
Adv. Eng. Mater.
,
4
(
2
), pp.
200
204
.
2.
Guglielmotti
,
A.
,
Quadrini
,
F.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2009
, “
Laser Bending of Aluminum Foam Sandwich Panels
,”
Adv. Eng. Mater.
,
11
(
11
), pp.
902
906
.
3.
Quadrini
,
F.
,
Guglielmotti
,
A.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2010
, “
Laser Forming of Open-Cell Aluminium Foams
,”
J. Mater. Process. Technol.
,
210
(
11
), pp.
1517
1522
.
4.
Coquard
,
R.
, and
Baillis
,
D.
,
2009
, “
Numerical Investigation of Conductive Heat Transfer in High-Porosity Foams
,”
Acta Mater.
,
57
(
18
), pp.
5466
5479
.
5.
Santo
,
L.
,
Guglielmotti
,
A.
, and
Quadrini
,
F.
,
2010
, “
Formability of Open-Cell Aluminium Foams by Laser
,”
ASME
Paper No. MSEC2010-34282, pp.
265
272
.
6.
Quadrini
,
F.
,
Bellisario
,
D.
,
Ferrari
,
D.
,
Santo
,
L.
, and
Santarsiero
,
A.
,
2013
, “
Numerical Simulation of Laser Bending of Aluminum Foams
,”
Key Eng. Mater.
,
554–557
, pp.
1864
1871
.
7.
Namba
,
Y.
,
1986
, “
Laser Forming in Space
,”
Proceedings of the International Conference on Lasers ‘85
,
Osaka, Japan
,
C. P.
Wang
, ed.,
STS Press
,
McLean, VA
, Vol.
85
, pp.
403
407
.
8.
Geiger
,
M.
, and
Vollertsen
,
F.
,
1993
, “
The Mechanisms of Laser Forming
,”
CIRP Ann.
,
42
(
1
), pp.
301
304
.
9.
Ji
,
Z.
, and
Wu
,
S.
,
1998
, “
FEM Simulation of the Temperature Field During the Laser Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
74
(1–3), pp.
89
95
.
10.
Fang
,
X.
,
Fan
,
Z.
,
Ralph
,
B.
,
Evansb
,
P.
, and
Underhillc
,
R.
,
2003
, “
Effects of Tempering Temperature on Tensile and Hole Expansion Properties of a C-Mn Steel
,”
J. Mater. Process. Technol.
,
132
(
1
), pp.
215
218
.
11.
Shen
,
H.
,
Yao
,
Z. Q.
,
Shi
,
Y. J.
, and
Hu
,
J.
,
2007
, “
The Simulation of Temperature Field in the Laser Forming of Steel Plates
,”
Int. J. Modell. Identif. Control.
,
2
(
3
), pp.
241
249
.
12.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Cooling Effects in Multiscan Laser Forming
,”
J. Manuf. Processes
,
3
(
1
), pp.
60
72
.
13.
Cheng
,
P.
,
Yao
,
Y. L.
,
Liu
,
C.
,
Pratt
,
D.
, and
Fan
,
Y.
,
2005
, “
Analysis and Prediction of Size Effect on Laser Forming of Sheet Metal
,”
SME J. Manuf. Processes
,
7
(
1
), pp.
28
41
.
14.
Bao
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Analysis and Prediction of Edge Effects in Laser Bending
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
53
61
.
15.
Li
,
W.
, and
Yao
,
Y. L.
,
2001
, “
Laser Bending of Tubes: Mechanism, Analysis, and Prediction
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
674
681
.
16.
Li
,
W.
, and
Yao
,
Y. L.
,
2000
, “
Numerical and Experimental Study of Strain Rate Effects in Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
445
451
.
17.
Shen
,
H.
, and
Vollertsen
,
F.
,
2009
, “
Modelling of Laser Forming: An Review
,”
Comput. Mater. Sci.
,
46
(
4
), pp.
834
840
.
18.
Mukarami
,
T.
,
Tsumura
,
T.
,
Ikeda
,
T.
,
Nakajima
,
H.
, and
Nakata
,
K.
,
2007
, “
Ansitropic Fusion Profile and Joint Strength of Lotus-Type Porous Magnesium by Laser Welding
,”
Mater. Sci. Eng. A
,
456
(
1–2
), pp.
278
285
.
19.
Yilbas
,
B. S.
,
Akhtar
,
S. S.
, and
Keles
,
O.
,
2013
, “
Laser Cutting of Aluminum Foam: Experimental and Model Studies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051018
.
20.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
.
21.
Yu
,
H. J.
,
Yao
,
G. C.
, and
Liu
,
Y. H.
,
2006
, “
Tensile Property of Al-Si Closed-Cell Aluminum Foam
,”
Trans. Nonferrous Met. Soc. China
,
16
(
6
), pp.
1335
1340
.
22.
Konstantinidis
,
I. Ch.
,
Papadopoulos
,
D. P.
,
Lefakis
,
H.
, and
Tsipas
,
D. N.
,
2005
, “
Model for Determining Mechanical Properties of Aluminum Closed-Cell Foams
,”
Theor. Appl. Fract. Mech.
,
43
(
2
), pp.
157
167
.
You do not currently have access to this content.