This article presents an enhanced mathematical model for transient thermal analysis in machining processes. The proposed mathematical model is able to simulate transient tool, workpiece, and chip temperature fields as a function of time for interrupted processes with time varying chip loads such as milling and continuous machining processes such as turning and drilling. A finite difference technique with implicit time discretization is used for the solution of partial differential equations to simulate the temperature fields on the tool, workpiece, and chip. The model validations are performed with the experimental temperature measurement data available in the literature for the interrupted turning of Ti6Al6V–2Sn, Al2024, gray cast iron and for the milling of Ti6Al4V. The simulation results and experimental measurements agree well. With the newly introduced modeling approach, it is demonstrated that time-dependent dynamic variations of the temperature fields are predicted with maximum 12% difference in the validated cases by the proposed transient thermal model.

References

1.
Trigger
,
K.
, and
Chao
,
B.
,
1951
, “
An Analytical Evaluation of Metal Cutting Temperature
,”
Tran. ASME
,
73
, pp.
57
68
.
2.
Chao
,
B.
, and
Trigger
,
K.
,
1955
, “
Temperature Distribution at the Tool Chip Interface in Metal Cutting
,”
Trans. ASME
,
77
, pp.
1107
1121
.
3.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting Tool Temperatures
,”
Trans. ASME
,
76
, pp.
217
231
.
4.
Venuvinod
,
P. K.
, and
Lau
,
W. S.
,
1986
, “
Estimation of Rake Temperatures in Free Oblique Cutting
,”
Int. J. Mach. Tool Des. Res.
,
26
(
1
), pp.
1
14
.
5.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2000
, “
Thermal Modeling of the Metal Cutting Process Part I: Temperature Rise Distribution Due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
(9), pp.
1715
1752
.
6.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process Part II: Temperature Rise Distribution Due to Frictional Heat Source at the Tool–Chip Interface
,”
Int. J. Mech. Sci.
,
43
, pp.
57
88
.
7.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Thermal Modeling of the Metal Cutting Process Part III: Temperature Rise Distribution Due to the Combined Effects of Shear Plane Heat Source and the Tool–Chip Interface Frictional Heat Source
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
89
107
.
8.
Chou
,
Y. K.
, and
Song
,
H.
,
2005
, “
Thermal Modeling for White Layer Predictions in Finish Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
481
495
.
9.
Stephenson
,
D. A.
, and
Ali
,
A.
,
1992
, “
Tool Temperatures in Interrupted Metal Cutting
,”
J. Eng. Ind.
,
114
, pp.
127
136
.
10.
Radulescu
,
R.
, and
Kapoor
,
S. G.
,
1994
, “
An Analytical Model for Prediction of Tool Temperature Fields During Continuous and Interrupted Cutting
,”
J. Eng. Ind.
,
116
(
2
), pp.
135
143
.
11.
Richardson
,
D. J.
,
Keavey
,
M. A.
, and
Dailami
,
F.
,
2006
, “
Modelling of Cutting Induced Workpiece Temperatures for Dry Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(10), pp.
1139
1145
.
12.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
Davis
,
G. D. V.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining
,”
Arch.: Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
627
638
.
13.
Strenkowski
,
J. S.
, and
Moon
,
K.-J.
,
1990
, “
Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distributions in Orthogonal Metal Cutting
,”
J. Eng. Ind.
,
112
(4), pp.
313
318
.
14.
Lin
,
Z. C.
, and
Lin
,
S. Y.
,
1992
, “
A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting
,”
ASME J. Eng. Mater. Technol.
,
114
(
2
), pp.
218
226
.
15.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
J. Eng. Ind.
,
117
(1), pp.
84
93
.
16.
Özel
,
T.
, and
Altan
,
T.
,
2000
, “
Process Simulation Using Finite Element Method—Prediction of Cutting Forces, Tool Stresses and Temperatures in High-Speed Flat End Milling
,”
Int. J. Mach. Tools Manuf.
,
40
(5), pp.
713
738
.
17.
Abukhshim
,
N.
,
Mativenga
,
P.
, and
Sheikh
,
M.
,
2006
, “
Heat Generation and Temperature Prediction in Metal Cutting: A Review and Implications for High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
782
800
.
18.
Dutt
,
R. P.
, and
Brewer
,
R. C.
,
1965
, “
On the Theoretical Determination of the Temperature Field in Orthogonal Machining
,”
Int. J. Prod. Res.
,
4
(
2
), pp.
91
114
.
19.
Rapier
,
A. C.
,
1954
, “
A Theoretical Investigation of the Temperature Distribution in the Metal Cutting Process
,”
Br. J. Appl. Phys.
,
5
(
11
), pp.
400
405
.
20.
Smith
,
A.
, and
Armarego
,
E.
,
1981
, “
Temperature Prediction in Orthogonal Cutting With a Finite Difference Approach
,”
CIRP Ann.
,
30
(
1
), pp.
9
13
.
21.
Lazoglu
,
I.
, and
Altintas
,
Y.
,
2002
, “
Prediction of Tool and Chip Temperature in Continuous and Interrupted Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1011
1022
.
22.
Ulutan
,
D.
,
Lazoglu
,
I.
, and
Dinc
,
C.
,
2009
, “
Three-Dimensional Temperature Predictions in Machining Processes Using Finite Difference Method
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
1111
1121
.
23.
Grzesik
,
W.
,
2004
, “
Finite Difference Analysis of the Thermal Behaviour of Coated Tools in Orthogonal Cutting of Steels
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1451
1462
.
24.
Lazoglu
,
I.
, and
Islam
,
C.
,
2012
, “
Modeling of 3D Temperature Fields for Oblique Machining
,”
CIRP Ann.
,
61
(
1
), pp.
127
130
.
25.
Kaymakci
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling, and Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
34
45
.
26.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University
,
Cambridge, UK
.
27.
LeVeque
,
R. J.
,
2007
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
,
SIAM
, Philadelphia.
28.
Tannehill
,
J.
,
Anderson
,
D.
, and
Pletcher
,
R.
,
1997
,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
London
.
29.
Liseikin
,
V. D.
,
2010
,
Grid Generation Methods
,
Springer
,
New York
.
30.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics
,
Engineering Education System
,
Wichita, KS
.
31.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti–6Al–6V–2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.
32.
Stephenson
,
D. A.
,
1991
, “
Assessment of Steady-State Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data
,”
ASME J. Manuf. Sci. Eng.
,
113
(
2
), pp.
121
128
.
33.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
34.
Sato
,
M.
,
Tamura
,
N.
, and
Tanaka
,
H.
,
2011
, “
Temperature Variation in the Cutting Tool in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021005
.
You do not currently have access to this content.