Safety, lightweight design, and reduction of emissions are terms which are key issues in modern vehicle construction. These challenges can be met by new lightweight design strategies, e.g., by using lightweight materials and high-strength steels as well as innovative forming technologies such as media based press hardening (MBPH). MBPH as a sub-production technique of hydroforming is a tempered internal high-pressure forming process of closed profiles, which this article is about, or sheet metals by gaseous media. Due to the high process requirements (internal pressure up to 70 MPa and temperatures up to 1000 °C), it has not been possible to measure the temperature curve of the active medium in a reliable way until now. The aim of the research project described in this article was to develop an innovative measuring instrument to determine the gas temperature curve with a measuring frequency of at least 1 Hz. Analytical and numerical calculations have indicated that the active medium has a significant influence on the thermodynamic of the forming process. The finite element analysis (FEA) of the heat flow during the forming process has indicated that the influence of the gas on the cooling process of the work piece is about 15% of the total influence of the tool. Consequently, the active medium in media based press hardening processes is an important thermal influencing factor. Experiments have confirmed that it is possible to determine the calculated curve of the gas temperature and maximum temperatures of the active media up to 500 °C. The findings of these studies make a significant contribution to identifying and analyzing the complete temperature balance in tempered active media based forming processes.

References

1.
Göschel
,
A.
,
Sterzing
,
A.
, and
Schönherr
,
J.
,
2011
, “
Balancing Procedure for Energy and Material Flows in Sheet Metal Forming
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
170
179
.10.1016/j.cirpj.2011.06.018
2.
Lang
,
L. H.
,
Wang
,
Z. R.
,
Kang
,
D. C.
,
Yuan
,
S. J.,
Zhang
,
S. H.,
Danckert
,
J.,
and
Nielsen
,
K. B.,
2004
, “
Hydroforming Highlights: Sheet Hydroforming and Tube Hydroforming
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
165
177
.10.1016/j.jmatprotec.2004.04.032
3.
Abedrabbo
,
N.
,
Worswick
,
M.
,
Mayer
,
R.
, and van Riemsdijk, I.,
2009
, “
Optimization Methods for the Tube Hydroforming Process Applied to Advanced High-Strength Steels With Experimental Verification
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
110
123
.10.1016/j.jmatprotec.2008.01.060
4.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.10.1016/j.jmatprotec.2010.07.019
5.
Keigler
,
M.
,
Bauer
,
H.
,
Harrison
,
D.
, and De Silva, A. K. M.,
2005
, “
Enhancing the Formability of Aluminium Components Via Temperature Controlled Hydroforming
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
363
370
.10.1016/j.jmatprotec.2005.06.024
6.
Neugebauer
,
R.
,
Bouzakis
,
K.-D.
,
Denkena
,
B.
,
Klocke,
F.
Sterzing,
A.
,
Tekkaya,
A. E.,
and
Wertheim,
R.,
2011
, “
Velocity Effects in Metal Forming and Machining Processes
,”
CIRP Ann.
,
60
(
2
), pp.
627
650
.10.1016/j.cirp.2011.05.001
7.
Irrgang
,
K.
, and
Michalowsky
,
L.
,
2004
,
Temperaturmesspraxis mit Wider-standsthermometern und Thermoelementen
,
Vulkan Verlag
,
Essen
, Germany, pp.
176
178
.
8.
Lönnermark
,
A.
,
Hedekvist
,
P.
, and
Ingason
,
H.
,
2008
, “
Gas Temperature Measurements Using Fibre Bragg Grating During Fire Experiments in a Tunnel
,”
Fire Saf. J.
,
43
(
2
), pp.
119
126
.10.1016/j.firesaf.2007.06.001
9.
Epple
,
B.
,
Leithner
,
R.
,
Linzer
,
W.
, and Walther, H.,
2009
,
Simulation von Kraftwerken und wärmetechnischen Anlagen
,
Springer Verlag Wien
,
New York
.
10.
Eklund
,
T. I.
, and
Dobbins
,
R. A.
,
1977
, “
Application of the Hot Wire Anemometer to Temperature Measurement in Transient Gas Flows
,”
Int. J. Heat Mass Transfer
,
20
(
10
), pp.
1051
1058
.10.1016/0017-9310(77)90190-9
11.
Siemens
A. G.
,
1999
, “
Verfahren und Vorrichtung zur Bestimmung der Gastemperatur des Abgases einer Brennkraftmaschine
,” Patent DE 199 13 910 C2.
12.
Ardekani
,
M. A.
, and
Farhani
,
F.
,
2009
, “
Experimental Study on Response of Hot Wire and Cylindrical Hot Film Anemometers Operating Under Varying Fluid Temperatures
,”
Flow Meas. Instrum.
,
20
(
4–5
), pp.
174
179
.10.1016/j.flowmeasinst.2009.06.001
13.
ABB Research Ltd
,
1999
, “
Verfahren und Vorrichtung zur Gastemperaturmessung mit laserinduzierter Weissglut-Pyrometrie
,” Patent DE 199 45 640 A1.
14.
Ryser
,
R.
,
Gerber
,
T.
, and
Dreier
,
T.
,
2009
, “
Soot Particle Sizing During High-Pressure Diesel Spray Combustion Via Time-Resolved Laser-Induced Incandescence
,”
Combust. Flame
,
156
(
1
), pp.
120
129
.10.1016/j.combustflame.2008.08.005
15.
Gnielinski
,
V.
,
Kabalec
,
S.
,
Kind
,
M.
,
Martin
,
H.,
Mewes,
D.,
Faber
,
K.,
and
Stephan,
P.,
2006
,
VDI-Wärmeatlas
,
Springer Verlag
,
Berlin
.
16.
Brosius
,
A.
,
Karbasian
,
H.
,
Tekkaya
,
A. E.
,
Lechler
,
J.,
Merklein
,
M.,
Geiger
,
M.,
Springer
,
R.
,
Schaper
,
M.,
Bach
,
F. W.,
and
Hoffmann
,
H.,
2007
, “
Modellierung und Simulation der Warmblechumformung: Aktueller Stand und zukünftiger Forschungsbedarf
,”
Erlanger Workshop Warmblechumformung
, Tagungsband 2, Erlangen, Germany, pp.
37
58
.
17.
Merklein
,
M.
, and
Lechler
,
J.
,
2008
, “
Determination of Material and Process Characteristics for Hot Stamping Processes of Quenchenable Ultra High Strength Steels With Respect to a FE-Based Process Design
,”
SAE Int. J. Mater. Manuf.
,
1
(
1
), pp.
411
426
.10.4271/2008-01-0853
18.
Svec
,
T.
, and
Merklein
,
M.
,
2010
, “
Auswirkungen Spezifischer Abkühlbedingungen auf den Wärmeübergang bei Presshärtprozessen
,”
Erlanger Workshop Warmblechumformung
, Tagungsband 5, Erlangen, Germany, pp.
121
140
.
You do not currently have access to this content.