Laser peen forming (LPF) is a purely mechanical forming method achieved through the use of laser energy to form complex shapes or to modify curvatures. It is flexible and independent of tool inaccuracies that result from wear and deflection. Its nonthermal process makes it possible to form without material degradation or even improve them by inducing compressive stress over the target surface. In the present study, a fully three-dimensional numerical model is developed to simulate the forming process of laser peen forming. The simulation procedure is composed of several steps mainly including the shock pressure prediction, the modal analysis, and the forming process calculation. System critical damping is introduced to prevent unnecessary long post-shock residual oscillations and to greatly decrease the solution time for simulation. The bending profiles and angles with different thicknesses are experimentally measured at different scanning lines and scanning velocities to understand the process and validate the numerical model. The calculated bending profiles and angles agree well with the trend of the measured results. But it is found that simulations with the Johnson–Cook model are more consistent, matching the experimental results for the thick sheet metal with a convex bending, while the elastic-perfectly-plastic model produces a better agreement even though with underestimated values for the thinner sheet metal with a concave bending. The reason for this phenomenon is discussed, combining the effects of strain rate and feature size. Both the simulation and the experiments show that a continuous decrease in bending angle from concave to convex is observed with increasing specimen thickness in general. Large bending distortion is easier to induce by generating a concave curvature with LPF, and the angle of bending distortion depends on the number of laser shocks.

1.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y. -W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
(
10
), pp.
1021
1036
.
2.
Niehoff
,
H. S.
, and
Vollertson
,
F.
, 2005, “
Laser Induced Shock Waves in Deformation Processing
,”
METALURGIJA-Journal of Metallurgy
,
11
(
3
), pp.
183
194
.
3.
Wang
,
Y.
,
Fan
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2007, “
Energy-Level Effects on the Deformation Mechanism in Microscale Laser Peen Forming
,”
J. Manuf. Process.
1526-6125,
9
(
1
), pp.
1
12
.
4.
Kannatey-Asibu
,
E.
, Jr.
, and
Lathia
,
B.
, 2007, “
Laser Forming by Shock Peening
,”
Transactions of NAMRI
,
35
, pp.
401
407
.
5.
Hackel
,
L.
, and
Harris
,
F.
, 2002, “
Contour Forming of Metals by Laser Peening
,” U.S. Patent No. 6,410,884.
6.
Hackel
,
L.
, and
Harris
,
F.
, 2002, “
Pre-Loading of Components During Laser Peen Forming
,” U.S. Patent No. 6,670,578.
8.
Ocaña
,
J. L.
,
Morales
,
M.
,
García-Ballesterosa
,
J. J.
,
Porro
,
J. A.
,
García
,
O.
, and
Molpeceres
,
C.
, 2009, “
Laser Shock Microforming of Thin Metal Sheets
,”
Appl. Surf. Sci.
0169-4332,
255
(
10
), pp.
5633
5636
.
9.
Edward
,
K. R.
,
Carey
,
C.
,
Edwardson
,
S. P.
,
Dearden
,
G.
,
Williams
,
C. J.
, and
Watkins
,
K. G.
, 2007,
Laser Peen Forming for 2D Shaping and Adjustment of Metallic Components
,
Proceedings of the 5th Laser Assisted Net Shape Engineering
,
M.
Geiger
,
A.
Otto
,
M.
Schmidt
, eds.,
Meisenbach-Verlag
,
Bamberg, Germany
.
10.
Wang
,
Y.
,
Fan
,
Y.
,
Kysar
,
J. W.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2008, “
Microscale Laser Peen Forming of Single Crystal
,”
J. Appl. Phys.
0021-8979,
103
(
6
), p.
063525
.
11.
Ding
,
K.
, and
Ye
,
L.
, 2003, “
Three-Dimensional Dynamic Finite Element Analysis of Multiple Laser Shock Peening Processes
,”
Surf. Eng.
0267-0844,
19
(
5
), pp.
351
358
.
12.
Hu
,
Y. X.
,
Yao
,
Z. Q.
, and
Hu
,
J.
, 2006, “
3-D Fem Simulation of Laser Shock Processing
,”
Surf. Coat. Technol.
0257-8972,
201
(
3–4
), pp.
1426
1435
.
13.
Amarchinta
,
H. K.
,
Grandhi
,
R. V.
,
Langer
,
K.
, and
Stargel
,
D. S.
, 2009, “
Material Model Validation for Laser Shock Peening Process Simulation
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
17
(
1
), p.
015010
.
14.
Hu
,
Y. X.
, and
Yao
,
Z. Q.
, 2008, “
Numerical Simulation and Experimentation of Overlapping Laser Shock Processing With Symmetry Cell
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
2
), pp.
152
162
.
15.
Ocaña
,
J. L.
,
Moralesa
,
M.
,
Molpeceresa
,
C.
,
García
,
O.
,
Porro
,
J. A.
, and
García-Ballesteros
,
J. J.
, 2007, “
Short Pulse Laser Microforming of Thin Metal Sheets for MEMS Manufacturing
,”
Appl. Surf. Sci.
0169-4332,
254
(
4
), pp.
997
1001
.
16.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
, 2001, “
Microforming
,”
CIRP Annals–Manufacturing Technology
,
50
(
2
), pp.
445
462
.
17.
Johnson
,
G.
, and
Cook
,
W.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Srain Rates and High Temperatures
,
Proceedings of the 7th International Symposium on Ballistics
,
J. M.
Michael
and
E. B.
Joseph
, eds.,
International Ballistics Committee
,
The Hague, Netherlands
, pp.
541
547
.
18.
Peyre
,
P.
,
Chaieb
,
A. I.
, and
Braham
,
A. C.
, 2007, “
Fem Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
(
3
), pp.
205
221
.
19.
Nunes
,
R.
,
Adams
,
J. H.
,
Ammons
,
M.
,
Avery
,
H. S.
,
Barnhurst
,
R. J.
,
Bean
,
J. C.
,
Beaudry
,
B. J.
, and
Berry
,
D. F.
, 1990,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook
,
ASM International
,
Materials Park, OH
.
20.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1997, “
Shock Waves From a Water-Confined Laser-Generated Plasma
,”
J. Appl. Phys.
0021-8979,
82
(
6
), pp.
2826
2832
.
21.
Zhang
,
W.
,
Yao
,
Y. L.
, and
Noyan
,
I. C.
, 2004, “
Microscale Laser Shock Peening of Thin Films, Part 1: Experiment, Modeling and Simulation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
10
17
.
22.
Meyers
,
M. A.
,
Benson
,
D. J.
,
Voringer
,
O.
,
Kad
,
B. K.
,
Xue
,
Q.
, and
Fu
,
H. -H.
, 2002, “
Constitutive Description of Dynamic Deformation: Physically-Based Mechanisms
,”
Mater. Sci. Eng., A
0921-5093,
322
(
1–2
), pp.
194
216
.
23.
Gilman
,
J. J.
, 1968, “
Dislocation Dynamics and the Response of Materials to Impact
,”
Appl. Mech. Rev.
0003-6900,
21
(
8
), pp.
767
783
.
24.
Leu
,
D. -K.
, 2009, “
Modeling of Size Effect on Tensile Flow Stress of Sheet Metal in Microforming
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
131
(
1
), p.
011002
.
25.
Engel
,
U.
, and
Eckstein
,
R.
, 2002, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
0924-0136,
125-126
, pp.
35
44
.
You do not currently have access to this content.