Hollow needles are one of the most common medical devices, yet little study has focused on the needle tip cutting geometry for biopsy, which is a tissue cutting process. This research develops mathematical models to calculate the inclination and rake angles along cutting edges on needle tips generated by planes. Three types of plane needle tips, the one-plane bias bevel, multi-plane symmetrical, and two-plane nonsymmetric needles, are investigated. The models show that the leading tip of a bias bevel needle has an inclination angle of 0 deg, the worst configuration for cutting. Symmetric multiplane needles on the other hand have very high inclination angles, 60, 56.3, and 50.8 deg, given a needle formed by two-, three-, and four-plane, respectively, for a bevel angle of 30 deg and can assist more effective needle biopsy. The rake angle is at its greatest value (the best configuration for cutting), which equals the 90 deg minus the bevel angle, at the initial cutting point for the bias bevel needle. Experiments are performed using three 11 gauge two-plane symmetric needles with 20, 25, and 30 deg bevel angles on bovine liver and demonstrate that the needle tip geometry affects biopsy performance, where longer biopsy samples are collected with needles of higher rake and inclination angle.

1.
Fink
,
K.
,
Hutarew
,
G.
,
Pytel
,
A.
, and
Schmeller
,
N.
, 2005, “
Prostate Biopsy Outcome Using 29 mm Cutting Length
,”
Urol. Int.
0042-1138,
75
(
3
), pp.
209
212
.
2.
Iczkowski
,
K.
,
Casella
,
G.
,
Seppala
,
R.
,
Jones
,
G.
,
Mishler
,
B.
,
Qian
,
J.
, and
Bostwick
,
D.
, 2002, “
Needle Core Length in Sextant Biopsy Influences Prostate Cancer Detection Rate
,”
Urology
0090-4295,
59
(
5
), pp.
698
703
.
3.
Ubhayakar
,
G.
,
Li
,
W.
,
Corbishley
,
C.
, and
Patel
,
U.
, 2002, “
Improving Glandular Coverage During Prostate Biopsy Using a Long-Core Needle: Technical Performance of an End-Cutting Needle
,”
BJU Int.
1464-4096,
89
(
1
), pp.
40
43
.
4.
Moore
,
J. Z.
,
McLaughlin
,
P. W.
,
McGill
,
C. S.
,
Zhang
,
Q.
,
Zheng
,
H.
, and
Shih
,
A. J.
, 2009, “
Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
,”
Trans. NAMRI/SME
1047-3025,
37
, pp.
49
56
.
5.
O’Leary
,
M. D.
,
Simone
,
C.
,
Washio
,
T.
,
Yoshinaka
,
K.
, and
Okamura
,
A. M.
, 2003, “
Robotic Needle Insertion: Effects of Friction and Needle Geometry
,”
IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Vol.
2
, pp.
1774
1780
.
6.
Podder
,
T. K.
,
Clark
,
D. P.
,
Sherman
,
J.
,
Fuller
,
D.
,
Messing
,
E. M.
,
Rubens
,
D. J.
,
Strang
,
J. G.
,
Zhang
,
Y. D.
,
O’Dell
,
W.
,
Ng
,
W. S.
, and
Yu
,
Y.
, 2005, “
Effects of Tip Geometry of Surgical Needles: An Assessment of Force and Deflection
,”
Third European Medical and Biological Engineering Conference EMBEC’05
, Prague, Czech Republic, pp.
1641
1644
.
7.
Mahvash
,
M.
,
Voo
,
L.
,
Kim
,
D.
,
Jeung
,
K.
,
Wainer
,
J.
, and
Okamura
,
A.
, 2008, “
Modeling Force of Cutting With Surgical Scissors
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
, pp.
848
856
.
8.
Okamura
,
A. M.
,
Simone
,
C.
, and
O’Leary
,
M. D.
, 2004, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
51
, pp.
1707
1716
.
9.
Glozman
,
D.
, and
Shoham
,
M.
, 2004, “
Flexible Needle Steering and Optimal Trajectory Planning for Percutaneous Therapies
,”
Medical Image Computing and Computer-Assisted Intervention
,
Springer
,
Berlin
,
2878
, pp.
137
144
.
10.
Webster
,
R. J.
, III
,
Kim
,
J.
,
Cowan
,
N.
,
Chirikjian
,
G.
, and
Okamura
,
M.
, 2006, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Robot. Res.
0278-3649,
25
, pp.
509
525
.
11.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallem
,
M.
, 2007, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
1350-4533,
29
, pp.
413
431
.
12.
Misra
,
S.
,
Ramesh
,
K.
, and
Okamura
,
A.
, 2008, “
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
,”
Presence (Camb. Mass.)
,
17
, pp.
463
491
.
13.
Misra
,
S.
,
Reed
,
K.
,
Schafer
,
B.
,
Ramesh
,
K.
, and
Okamura
,
A.
, 2010, “
Mechanics of Flexible Needles Robotically Steered Through Soft Tissue
,”
Int. J. Robot. Res.
0278-3649, in press.
14.
Boothroyd
,
G.
, and
Knight
,
W.
, 2005,
Fundamentals of Machining and Machine Tools
, 3rd ed.,
Taylor & Francis
,
Boca Raton, FL
.
15.
Stephenson
,
D.
, and
Agapiou
,
J.
, 2005,
Metal Cutting Theory and Practice
, 2nd ed.,
Taylor & Francis
,
Boca Raton, FL
.
You do not currently have access to this content.