This investigation considers the size effect on the deformation behavior of simple tension in microforming and thus proposes a simple model of the tensile flow stress of sheet metal. Experimental results reveal that the measure of the flow stress can be represented as a hyperbolic function tanh(T/D), which is a function of T/D (sheet thickness/grain size). The predicted flow stress agrees very well with the published experiment. Notably, a specimen with smaller grains has lower normalized flow stress for a given T/D. Since the material properties of the macroscale specimen do not pertain to the microscale, a critical condition (T/D)c that distinguishes the macroscale from the microscale in the tensile flow stress is subsequently proposed, based on the “affected zone” model, the pile-up theory of dislocations, and the Hall–Petch relation. The distribution of the predicted (T/D)c is similar to the experimental finding that the (T/D)c decreases as the grain size increases. However, the orientation-dependent factor β is sensitive to (T/D)c. Hence, further study of the orientation-dependent factor β is necessary to obtain a more accurate (T/D)c and, thus, to evaluate and understand better the tensile flow stress of sheet metal in microforming.

1.
Hall
,
E. O.
, 1951, “
The Deformation and Aging of Mild Steel
,”
Proc. Phys. Soc. London, Sect B
,
64
, pp.
747
753
. 1478-7814
2.
Petch
,
N. J.
, 1953, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst., London
0021-1567,
174
, pp.
25
28
.
3.
Miyazaki
,
S.
,
Fukita
,
H.
, and
Hiraoka
,
H.
, 1979, “
Effect of Specimen Size on the Flow Stress of Rod Specimens of Polycrystalline Cu–Al Alloy
,”
Scr. Metall.
0036-9748,
13
, pp.
447
449
.
4.
Geiger
,
M.
,
Vollertsen
,
F.
, and
Kals
,
R.
, 1996, “
Fundamentals on the Manufacturing of Sheet Metal Microparts
,”
CIRP Ann.
0007-8506,
45
, pp.
277
282
.
5.
Engel
,
U.
,
Messner
,
A.
, and
Geiger
,
M.
, 1996, “
Advanced Concept for the FE-Simulation of Metal Forming Processes for the Production of Microparts
,”
Proceedings of the Fifth International Conference on the Technology of Plasticity (ICTP)
, Columbus, OH, Vol.
II
, pp.
903
906
.
6.
Raulea
,
L. V.
,
Govaert
,
L. E.
, and
Baaijens
,
F. P. T.
, 1999, “
Grain and Specimen Size Effects in Processing Metal Sheets
,”
Advanced Technology of Plasticity
,
Proceedings of the Sixth ICTP
, Sept. 19–24,
Springer
,
Berlin
, Vol.
II
, pp.
939
944
.
7.
Engel
,
U.
,
Tiesler
,
N.
, and
Eckstein
,
R.
, 2001, “
Microparts—A Challenge for Forming Technology
,”
The Third International Conference on Industrial Tools
, Slovenia, Rogaika Slatina, Celje, Apr. 22–26, pp.
31
34
.
8.
Engel
,
U.
, and
Eckstein
,
R.
, 2002, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
. 0924-0136
9.
Kals
,
T. A.
, and
Eckstein
,
R.
, 2000, “
Miniaturization in Sheet Metal Working
,”
J. Mater. Process. Technol.
0924-0136,
103
, pp.
95
101
.
10.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
, 2001, “
Microforming
,”
CIRP Ann.
0007-8506,
50
, pp.
445
462
.
11.
Yao
,
X.
,
Zajac
,
S.
, and
Hutchinson
,
B.
, 1999, “
Estimation of Compression Flow Stress From Post-Deformation Hardness in Al–Mg Alloys
,”
Scr. Mater.
,
41
(
3
), pp.
253
258
. 1359-6462
12.
Ahn
,
J. H.
,
Jeon
,
E. C.
,
Choi
,
Y.
,
Lee
,
Y. H.
, and
Kwon
,
D.
, 2002, “
Derivation of Tensile Flow Properties of Thin Films Using Nanoindentation Technique
,”
Curr. Appl. Phys.
,
2
, pp.
525
531
. 1567-1739
13.
Miyazaki
,
S.
,
Shibata
,
K.
, and
Fujita
,
H.
, 1979, “
Effect of Specimen Thickness on Mechanical Properties of Polycrystalline Aggregates With Various Grain Sizes
,”
Acta Metall.
0001-6160,
27
, pp.
855
862
.
14.
Peng
,
L.
,
Liu
,
F.
,
Ni
,
J.
, and
Lai
,
X.
, 2007, “
Size Effects in Thin Sheet Metal Forming and Its Elastic-Plastic Constitutive Model
,”
Mater. Des.
,
28
, pp.
1731
1736
. 0264-1275
15.
Kim
,
G. -Y.
,
Ni
,
J.
, and
Koc
,
M.
, 2007, “
Modeling of the Size Effects on the Behavior of Metals in Microscale Deformation Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
470
476
.
16.
Kashyap
,
B. P.
, and
Tangri
,
K.
, 1995, “
On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel
,”
Acta Metall. Mater.
,
43
(
11
), pp.
3971
3981
. 0956-7151
17.
Dieter
,
G. E.
, 1976,
Mechanical Metallurgy
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
187
189
.
You do not currently have access to this content.