The spatial and temporal distribution of tool temperature in drilling of commercially pure titanium is studied using the inverse heat transfer method. The chisel and cutting edges of a spiral point drill are treated as a series of elementary cutting tools. Using the oblique cutting analysis of the measured thrust force and torque, the forces and frictional heat generation on elementary cutting tools are calculated. Temperatures measured by thermocouples embedded on the drill flank face are used as the input for the inverse heat transfer analysis to calculate the heat partition factor between the drill and chip. The temperature distribution of the drill is solved by the finite element method and validated by experimental measurements with good agreement. For titanium drilling, the drill temperature is high. At 24.4 m/min and 73.2 m/min drill peripheral cutting speed, the peak temperature of the drill reaches 480°C and 1060°C, respectively, after 12.7 mm depth of drilling with 0.025 mm feed per cutting tooth. The steady increase of drill temperature versus drilling time is investigated.

1.
Machado
,
A. R.
, and
Wallbank
,
J.
, 1990, “
Machining of Titanium and Its Alloys-A Review
,”
Proc. Inst. Mech. Eng., Part B
0954-4054, Part B: Management and Engineering Manufacture,
204
(
1
), pp.
53
60
.
2.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
, 1997, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
0924-0136,
68
(
3
), pp.
262
274
.
3.
Yang
,
X.
, and
Liu
,
C. R.
, 1999, “
Machining Titanium and Its Alloys
,”
Mach. Sci. Technol.
1091-0344,
3
(
1
), pp.
107
139
.
4.
Rahman
,
M.
,
Wong
,
Y. S.
, and
Zareena
,
A. R.
, 2003, “
Machininability of Titanium Alloys
,”
JSME Int. J., Ser. C
1340-8062,
46
(
1
), pp.
107
115
.
5.
Shaw
,
M. C.
, 1984,
Metal Cutting Principles
,
Oxford University Press
, New York.
6.
Trent
,
E. M.
, and
Wright
,
P. K.
, 2000,
Metal Cutting
,
Butterworth-Heinemann
, Boston.
7.
Sakurai
,
K.
,
Adachi
,
K.
,
Ogawa
,
K.
, and
Niba
,
R.
, 1992, “
Drilling of Ti-6Al-4V Alloy
,”
J. Jpn. Inst. Light Met.
,
42
(
7
), pp.
389
394
.
8.
Sakurai
,
K.
,
Adachi
,
K.
, and
Ogawa
,
K
, 1992, “
Low Frequency Vibratory Drilling of Ti-6Al-4V alloy
,”
J. Jpn. Inst. Light Met.
,
42
(
11
), pp.
633
637
.
9.
Sakurai
,
K.
,
Adachi
,
K.
,
Kamekawa
,
T.
,
Ogawa
,
K.
, and
Hanasaki
,
S.
, 1996, “
Intermittently Decelerated Feed Drilling of Ti-6%Al-4%V Alloy
,”
J. Jpn. Inst. Light Met.
,
46
(
3
), pp.
138
143
.
10.
Arai
,
M.
, and
Ogawa
,
M.
, 1997, “
Effects of High Pressure Supply of Cutting Fluid in Drilling of Titanium Alloy
,”
J. Jpn. Inst. Light Met.
,
47
(
3
), pp.
139
144
.
11.
Dornfeld
,
D. A.
,
Kim
,
J. S.
,
Dechow
,
H.
,
Hewson
,
J.
, and
Chen
,
L. J.
, 1999, “
Drilling Burr Formation in Titanium Alloy, Ti-6Al-4V
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
73
76
.
12.
Cantero
,
J.
,
Tardío
,
M.
,
Canteli
,
J.
,
Marcos
,
M.
, and
Miguélez
,
M.
, 2005, “
Dry drilling of alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
11
), pp.
1246
1255
.
13.
Li
,
R.
, and
Shih
,
A. J.
, 2006, “
High Throughput Drilling of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
0890-6955
47
(
1
), pp.
63
74
.
14.
Agapiou
,
J. S.
, and
Stephenson
,
D. A.
, 1994, “
Analytical and Experimental Studies of Drill Temperatures
,”
ASME J. Eng. Ind.
0022-0817,
116
(
1
), pp.
54
60
.
15.
Saxena
,
U. K.
,
DeVries
,
M. F.
, and
Wu
,
S. M.
, 1971, “
Drill Temperature Distributions by Numerical Solutions
,”
ASME J. Eng. Ind.
0022-0817,
93
(
B4
), pp.
1057
1065
.
16.
Watanabe
,
K.
,
Yokoyama
,
K.
, and
Ichimiya
,
R.
, 1977, “
Thermal Analyses of the Drilling Process
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
11
(
2
), pp.
71
77
.
17.
Fuh
,
K. H.
,
Chen
,
W. C.
, and
Liang
,
P. W.
, 1994, “
Temperature Rise in Twist Drills With a Finite Element Approach
,”
Int. Commun. Heat Mass Transfer
0735-1933,
21
(
3
), pp.
345
358
.
18.
Bono
,
M.
, and
Ni
,
J.
, 2001, “
The Effects of Thermal Distortions on the Diameter and Cylindricity of Dry Drilled Holes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
15
), pp.
2261
2270
.
19.
Bono
,
M.
, and
Ni
,
J.
, 2006, “
The Location of the Maximum Temperature on the Cutting Edges of a Drill
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
7-8
), pp.
901
907
.
20.
Watson
,
A. R.
, 1985, “
Drilling Model for Cutting Lip and Chisel Edge and Comparison of Experimental and Predicted Results I-Initial Cutting Lip Model
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
25
(
4
), pp.
347
365
.
21.
Ke
,
F.
,
Ni
,
J.
, and
Stephenson
,
D. A.
, 2005, “
Continuous Chip Formation in Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
15
), pp.
1652
1658
.
22.
Berliner
,
E. M.
, and
Krainov
,
V. P.
, 1991, “
Analytic Calculations of the Temperature Field and Heat Flows on the Tool Surface in Metal Cutting Due to Sliding Friction
,”
Wear
0043-1648,
143
(
2
), pp.
379
395
.
23.
Huang
,
Y.
, and
Liang
,
S. Y.
, 2005, “
Cutting Temperature Modeling Based on Non-Uniform Heat Intensity and Partition Ratio
,”
Mach. Sci. Technol.
1091-0344,
9
(
3
), pp.
301
323
.
24.
Karpat
,
Y.
, and
Ozel
,
T.
, 2005, “
An Analytical-Thermal Modeling Approach for Predicting Forces, Stresses and Temperatures in Machining With Worn Tools
,”
Proc. of 2005 ASME International Mechanical Engineering Congress and Exposition
,
ASME
New York, Vol.
16
, pp.
489
498
.
25.
Ernst
,
H.
, and
Haggerty
,
W. A.
, 1958, “
Spiral Point Drill—New Concept in Drill Point Geometry
,”
Trans. ASME
0097-6822,
80
, pp.
1059
1072
.
26.
Strenkowski
,
J. S.
,
Hsieh
,
C. C.
, and
Shih
,
A. J.
2004, “
An Analytical Finite Element Technique for Predicting Thrust Force and Torque in Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
12-13
), pp.
1413
1421
.
27.
Orfueil
,
M.
, 1987,
Electric Process Heating
,
Battelle Press
, Columbus, OH.
28.
Stabler
,
G.
, 1951, “
The Fundamental Geometry of Cutting Tools
,”
Proc. Inst. Mech. Eng.
0020-3483,
165
(
63
), pp.
14
21
.
29.
Lin
,
G. C.
,
Mathew
,
P.
,
Oxley
,
P. L. B.
, and
Watson
,
A. R.
, 1982, “
Predicting Cutting Forces for Oblique Machining Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
196
, pp.
141
148
.
30.
Shaw
,
M. C.
,
Cook
,
N. H.
, and
Smith
,
P. A.
, 1952, “
Mechanics of Three-Dimensional Cutting Operations
,”
Trans. ASME
0097-6822,
74
(
6
), pp.
1055
1064
.
31.
ASM
, 1994,
Material Properties Handbook: Titanium Alloys
,
ASM International
, Materials Park, OH.
32.
Himmelblau
,
D. M.
, 1972,
Applied Nonlinear Programming
,
McGraw-Hill
, New York.
33.
Luo
,
J.
, and
Shih
,
A. J.
, 2005, “
Inverse Heat Transfer of the Heat Flux due to Induction Heating
,”
ASME J. Manuf. Sci. Tech.
127
, pp.
555
563
.
You do not currently have access to this content.