The contribution of material separation in cutting ductile metals to the constant force component, and, hence, to the size effect in specific cutting energy is explored in this paper. A force-decomposition-based framework is proposed to reconcile the varied reasons given in literature for the size effect. In this framework, the cutting force is broken down into three components: one that is decreasing, another that is increasing, and the third that remains constant, with decreasing uncut chip thickness. The last component is investigated by performing orthogonal cutting experiments on OFHC copper at high rake angles of up to 70deg in an attempt to isolate it. As the rake angle is increased, the resulting experimental data show a trend toward a constant cutting-force component independent of the uncut chip thickness. Visual evidence of ductile tearing ahead of the tool associated with material separation leading to chip formation is shown. The measured constant force and the force needed for ductile crack extension are then compared.

1.
Lucca
,
D. A.
,
Rhorer
,
R. L.
, and
Komanduri
,
R.
, 1993, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
83
86
.
2.
Schimmel
,
R. J.
,
Endres
,
W. J.
, and
Stevenson
,
R.
, 2002, “
Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
536
543
.
3.
Fang
,
N.
, 2003, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Parts I And II
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
715
762
.
4.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
, 1962, “
On the Size Effect in Metal Cutting
,”
Int. J. Prod. Res.
0020-7543,
1
, pp.
75
99
.
5.
Connolly
,
R.
, and
Rubenstein
,
C.
, 1968, “
The Mechanics of Continuous Chip Formation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
8
(
3
), pp.
159
187
.
6.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
, 1998, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
0043-1648,
219
, pp.
84
97
.
7.
Nakayama
,
K.
, and
Tamura
,
K.
, 1968, “
Size Effect in Metal-Cutting Force
,”
ASME J. Eng. Ind.
0022-0817,
90
, pp.
119
126
.
8.
Backer
,
W. R.
,
Marshall
,
E. R.
, and
Shaw
,
M. C.
, 1952, “
The Size Effect in Metal Cutting
,”
Trans. ASME
0097-6822,
74
, pp.
61
72
.
9.
Kopalinsky
,
E. M.
, and
Oxley
,
P. L. B.
, 1984, “
Size Effects in Metal Removal Process
,”
3rd Conf. Mech. Prop. High Rates of Strain
, Oxford, pp.
389
396
.
10.
Shaw
,
M. C.
, 1950, “
A Quantized Theory of Strain Hardening as Applied to Cutting of Metals
,”
J. Appl. Phys.
0021-8979,
21
, pp.
599
606
.
11.
Larsen-basse
,
J.
, and
Oxley
,
P. L. B.
, 1973, “
Effect of Strain-Rate Sensitivity on Scale Phenomenon in Chip Formation
,”
Proceedings of 13th Int. Machine Tool Design and Research Conference
,
Univ. of Birmingham
,
UK
, pp.
209
216
.
12.
Dinesh
,
D.
,
Swaminathan
,
S.
,
Chandrasekhar
,
S.
, and
Farris
,
T. N.
, 2001, “
An Intrinsic Size-Effect in Machining Due to the Strain Gradient
,”
Proc. ASME IMECE
, Nov. 11–16,
ASME
,
New York
, pp.
197
204
.
13.
Joshi
,
S. S.
, and
Melkote
,
S. N.
, 2004, “
An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
679
684
.
14.
Atkins
,
A. G.
, 2003, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
373
396
.
15.
Thomsen
,
E. G.
,
Lapsley
,
J. T.
, and
Grassi
,
R. C.
, 1953, “
Deformation Work Absorbed by the Workpiece During Metal Cutting
,”
Trans. ASME
0097-6822,
75
, pp.
591
603
.
16.
Merchant
,
M. E.
, 1945, “
Mechanics of Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
0021-8979,
16
(
5
), pp.
267
275
.
17.
Madhavan
,
V.
,
Chandrasekhar
,
S.
, and
Farris
,
T. N.
, 2000, “
Machining As a Wedge Indentation
,”
ASME J. Appl. Mech.
0021-8936,
67
(
1
), pp.
128
139
.
18.
Atkins
,
A. G.
, 1974, “
Fracture Toughness and Cutting
,”
Int. J. Prod. Res.
0020-7543,
12
(
2
), pp.
263
274
.
19.
Shaw
,
M. C.
, 1997,
Metal Cutting Principles
,
Oxford Science Publications
,
New York
.
20.
Komanduri
,
R.
, and
Brown
,
R. H.
, 1972, “
The Formation of Microcracks in Machining a Low Carbon Steel
,”
Met. Mater.
,
6
, pp.
531
533
.
21.
Bitans
,
K.
, and
Brown
,
R. H.
, 1965, “
An Investigation of the Deformation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
5
, pp.
155
165
.
22.
Zorev
,
N. N.
, 1966,
Metal Cutting Mechanics
,
Pergamon Press
,
New York
, pp.
75
,
83
.
23.
Lapsley
,
J. T.
,
Grassi
,
R. C.
, and
Thomsen
,
E. G.
, 1950, “
Correlation of Plastic Deformation During Metal Cutting With Tensile Properties of the Work Material
,”
Trans. ASME
0097-6822,
72
, pp.
979
986
.
24.
Nyilas
,
A.
,
Nishimura
,
A.
, and
Obst
,
B.
, 2002, “
Further Aspects on J-Evaluation Demonstrated with EDM Notched Round Bars and Double-Edged Plates Between 300 and 7K
,”
Proc. of Int. Cryogenic Materials Conf. ICMC
,
Madison, WI
, AIP, Melville, NY,
48
, pp.
131
138
.
25.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
49
.
26.
Engel
,
L.
, and
Klingele
,
H.
, 1981,
An Atlas of Metal Damage
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
41
.
27.
Weertman
,
J.
, 1996,
Dislocation Based Fracture Mechanics
,
World Scientific
,
Singapore
.
28.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
, 1985,
Advanced Fracture Mechanics
,
Oxford University Press
,
London
, p.
212
.
You do not currently have access to this content.