This paper presents an upper bound approach to analyze axisymmetric extrusion processes. A cylindrical and a spherical coordinate system are defined to represent the die geometry and the velocity field, respectively. For various curved dies, minimized upper bound results can be obtained by relating these two coordinate systems. Based on this modeling technique, the effects of die geometry, reduction ratio, and friction are investigated. Axisymmetric extrusion through various curved dies can be easily optimized with the proposed methodology.
Issue Section:
Technical Papers
1.
Kudo
, H.
, 1960, “Some Analytical and Experimental Studies of Axi-Symmetric Cold Forging and Extrusion I
,” Int. J. Mech. Sci.
0020-7403, 2
, pp. 102
–127
.2.
Yang
, C. T.
, 1962, “The Upper-Bound Solution as Applied to Three-Dimensional Extrusion and Piercing Problems
,” ASME J. Eng. Ind.
0022-0817, 84
, pp. 397
–404
.3.
Avitzur
, B.
, 1965, “Analysis of Metal Extrusion
,” ASME J. Eng. Ind.
0022-0817, 87
, pp. 57
–70
.4.
Avitzur
, B.
, 1966, “Flow Characteristics Through Conical Converging Dies
,” ASME J. Eng. Ind.
0022-0817,” 88
(4
), pp. 410
–420
.5.
Avitzur
, B.
, 1968, “Analysis of Central Bursting Defects in Extrusion and Wire Drawing
,” ASME J. Eng. Ind.
0022-0817, 90
, pp. 79
–91
.6.
Zimerman
, Z.
, and Avitzur
, B.
, 1970, ”Metal Flow Through Conical Converging Dies—A Lower Bound Approach Using Generalized Boundaries of the Plastic Zone
,” ASME J. Eng. Ind.
0022-0817, 92
, pp 119
–129
.7.
Richmond
, O.
, 1968, “Theory of Streamlined Dies for Drawing and Extrusion
,” in Mechanics of the Solid State
, Rimrott
and Schwaighofer
, eds., University of Toronto Press
, Toronto, Canada, pp. 154
–167
.8.
Kavalauskas
, R.
, Gunesakera
, J. S.
, et al., 1982, “Use of CAD/CAM to Manufacture Streamlined Dies for Extrusion of Complex Materials
,” CIRP Ann.
0007-8506, pp. 252
–258
.9.
Chen
, C. T.
, and Ling
, F. F.
, 1968, “Upper-Bound Solutions to Axisymmetric Extrusion Problems
,” Int. J. Mech. Sci.
0020-7403, 10
, pp. 863
–879
.10.
Nagpal
, V.
, 1974, “General Kinematically Admissible Velocity Fields for Some Axisymmetric Metal Forming Problems
,” ASME J. Eng. Ind.
0022-0817, 96
, pp. 1197
–1201
.11.
Yang
, D. Y.
, Han
, C. H.
, and Lee
, B. C.
, 1985, “The Use of Generalised Deformation Boundaries for the Analysis of Axisymmetric Extrusion Through Curved Dies
,” Int. J. Mech. Sci.
0020-7403, 27
, pp. 653
–663
.12.
Yang
, D. Y.
, and Han
, C. H.
, 1987, “A New Formulation of Generalized Velocity Field for Axisymmetric Forward Extrusion Through Arbitrarily Curved Dies
,” ASME J. Eng. Ind.
0022-0817, 109
, pp. 161
–168
.13.
Wilson
, W. R. D.
, 1977, “A Simple Upper-Bound Method for Axisymmetric Metal Forming Problems
,” Int. J. Mech. Sci.
0020-7403, 19
, pp. 103
–112
.14.
Gordon
, W. A.
, Van Tyne
, C. J.
, and Sriram
, S.
, 2002, “Extrusion Through Spherical Dies-An Upper Bound Analysis
,” ASME J. Manuf. Sci. Eng.
1087-1357, 124
, pp. 92
–97
.15.
Srinivasan
, R.
, Gunasekera
, J. S.
, Gegel
, H. L.
, and Doraivelu
, S. M.
, 1990, ”Extrusion Through Controlled Strain Rate Dies
,” J. Mater. Shaping Technol.
, 8
, No. 2
, pp 133
–141
.16.
Lu
, Y. H.
and Lo
, S. W.
, 1999, “An Advanced Model of Designing Controlled Strain Rate Dies for Axisymmetric Extrusion
,” J. Mater. Eng. Perform.
1059-9495, 8
, pp. 51
–60
.17.
Avitzur
, B.
, 1968, Metal Forming: Processes and Analysis
, McGraw-Hill
, New York.18.
Chang
, K. T.
and Choi
, J. C.
, 1971, “Upper-Bound Solutions to Extrusion Problems Through Curved Dies
,” Proc. 12th Midwestern Mech. Conf.
, University of Notre Dame
, West Lafayette, IN, pp. 383
–396
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.