This work demonstrates the state of the art capabilities of three error separation techniques for nanometer-level measurement of precision spindles and rotationally-symmetric artifacts. Donaldson reversal is compared to a multi-probe and a multi-step technique using a series of measurements carried out on a precision aerostatic spindle with a lapped spherical artifact. The results indicate that subnanometer features in both spindle error motion and artifact form are reliably resolved by all three techniques. Furthermore, the numerical error values agree to better than one nanometer. The paper discusses several issues that must be considered when planning spindle or artifact measurements at the nanometer level.

1.
Taniguchi
,
N.
, 1983, “
Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing
,”
CIRP Ann.
0007-8506,
32
(
2
), pp.
573
582
.
2.
Bryan
,
J.
,
Clouser
,
R.
, and
Holland
,
E.
, 1967, “
Spindle Accuracy
,”
Am. Mach.
0002-9858,
111
(
25
), pp.
149
164
.
3.
Tlusty
,
J.
, 1959, “
Systems and Methods of Testing Machine Tools
,”
Microtechnic
,
13
(
4
), pp.
162
178
.
4.
Grejda
,
R. D.
, 2002, “
Use and Calibration of Ultraprecision Axes of Rotation With Nanometer Level Metrology
,” Penn State University, Ph.D. thesis.
5.
Donaldson
,
R. R.
, 1972, “
A Simple Method for Separating Spindle Error From Test Ball Roundness Error
,”
CIRP Ann.
0007-8506,
21
(
1
), pp.
125
126
.
6.
Bryan
,
J. B.
, and
Vanherck
,
P.
, 1975, “
Unification of Terminology Concerning the Error Motion of Axes of Rotation
,”
CIRP Ann.
0007-8506,
24
(
2
), pp.
555
562
.
7.
Scientific Technical Committee Me
, 1976, “
Unification Document Me: Axes of Rotation
,”
CIRP Ann.
0007-8506,
25
(
2
), pp.
545
564
.
8.
ANSI∕ASME B89.3.4M Axes of Rotation: Methods for Specifying and Testing Standard, 1985.
9.
Thompson
,
D. C.
, 1982, “
Compuron: How Round is Round? LLNL Energy and Technology Review
,” pp.
1
9
.
10.
Vanherck
,
P.
, and
Peters
,
J.
, 1973, “
Digital Axis of Rotation Measurement
,”
CIRP Ann.
0007-8506,
22
(
1
), pp.
135
136
.
11.
Mitsui
,
K.
, 1982, “
Development of a New Measuring Method for Spindle Rotation Accuracy by Three Points Method
,”
Proceedings of the 23rd International MTDR Conference
, pp.
115
121
.
12.
Arora
,
G. K.
,
Mallanna
,
C.
,
Anantharaman
,
B. K.
, and
Babin
,
P.
, 1977, “
Measurement and Evaluation of Spindle Running Error
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
17
(
2
), pp.
127
135
.
13.
Murthy
,
T. S. R.
,
Mallanna
,
C.
, and
Visveswaran
,
M. E.
, 1978, “
New Methods of Evaluating Axis of Rotation Error
,”
CIRP Ann.
0007-8506,
27
(
1
), pp.
365
369
.
14.
DeBra
,
D. B.
, 1986, “
Spindle Metrology—A Student Project
,” presentation at the SME 7th International Precision Machining and Gaging Symposium.
15.
Chapman
,
P. D.
, 1985, “
A Capacitance Based Ultra-Precision Spindle Analyzer
,”
J. Jpn. Soc. Precis. Eng.
0374-3543,
7
(
3
), pp.
129
137
.
16.
Hansen
,
H. J.
, 1988, “
A New Dynamic Spindle Analyzer
,” LLNL Preprint—UCRL 99490.
17.
Whitehouse
,
D. J.
, 1976, “
Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,”
J. Phys. E
0022-3735,
9
, pp.
531
536
.
18.
Salsbury
,
J. G.
, 2003, “
Implementation of the Estler Face Motion Reversal Technique
,”
J. Soc. Precis. Eng.
0912-0289,
27
(
2
), pp.
189
194
.
19.
Evans
,
C. J.
,
Hocken
,
R. J.
, and
Estler
,
W. T.
, 1996, “
Self-Calibration: Reversal, Redundancy, Error Separation, and Absolute Testing
,”
CIRP Ann.
0007-8506,
45
(
2
), pp.
617
634
.
20.
Mitsui
,
K.
, 1982, “
Development of a New Measuring Method for Spindle Rotation Accuracy by Three Points Method
,” in
Proceedings of the 23rd International MTDR Conference
, pp.
115
121
.
21.
Moore
,
D.
, 1989, “
Design Considerations in Multi-probe Roundness Measurement
,”
J. Phys. E
0022-3735,
22
(
6
), pp.
339
343
.
22.
Zhang
,
G. X.
, and
Wang
,
R. K.
, 1993, “
Four-Point Method of Roundness and Spindle Error Motion Measurements
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
593
596
.
23.
Zhang
,
G. X.
,
Zhang
,
Y. H.
,
Yang
,
Z. L.
, and
Li
,
Z.
, 1997, “
A Multipoint Method for Spindle Error Motion Measurement
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
441
445
.
24.
Chetwynd
,
D. G.
, and
Siddall
,
G. J.
, 1976, “
Improving the Accuracy of Roundness Measurement
,”
J. Phys. E
0022-3735,
9
(
7
), pp.
537
544
.
25.
Estler
,
W. T.
,
Evans
,
C. J.
, and
Shao
,
L. Z.
, 1997, “
Uncertainty Estimation for Multiposition Form Error Metrology
,”
J. Soc. Precis. Eng.
0912-0289,
21
(
2-3
), pp.
72
82
.
26.
Grejda
,
R. D.
,
Marsh
,
E. R.
, and
Vallance
,
R. R.
, 2005, “
Techniques for Calibrating Spindle With Nanometer Error Motion
,”
ASPE Journal of Precision Engineering
,
29
(
1
), pp.
113
123
.
27.
Vallance
,
R. R.
,
Marsh
,
E. R.
, and
Smith
,
P. T.
, 2004, “
The Effects of Spherical Target Radius on Capacitive Sensor Measurements
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
822
829
.
28.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
, 1994, “
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,” NIST Technical Note 1297.
29.
Cox
,
M. G.
, and
Lazzari
,
A.
, 2004, “
Modelling and Uncertainty for High-Accuracy Roundness Measurement 10th IMEKO TC7 International Symposium
,” June 30–July 2, 2004, Saint-Petersburg, Russia, pp.
1
5
.
You do not currently have access to this content.