This work demonstrates the state of the art capabilities of three error separation techniques for nanometer-level measurement of precision spindles and rotationally-symmetric artifacts. Donaldson reversal is compared to a multi-probe and a multi-step technique using a series of measurements carried out on a precision aerostatic spindle with a lapped spherical artifact. The results indicate that subnanometer features in both spindle error motion and artifact form are reliably resolved by all three techniques. Furthermore, the numerical error values agree to better than one nanometer. The paper discusses several issues that must be considered when planning spindle or artifact measurements at the nanometer level.
Issue Section:
Technical Papers
1.
Taniguchi
, N.
, 1983, “Current Status in, and Future Trends of, Ultraprecision Machining and Ultrafine Materials Processing
,” CIRP Ann.
0007-8506, 32
(2
), pp. 573
–582
.2.
Bryan
, J.
, Clouser
, R.
, and Holland
, E.
, 1967, “Spindle Accuracy
,” Am. Mach.
0002-9858, 111
(25
), pp. 149
–164
.3.
Tlusty
, J.
, 1959, “Systems and Methods of Testing Machine Tools
,” Microtechnic
, 13
(4
), pp. 162
–178
.4.
Grejda
, R. D.
, 2002, “Use and Calibration of Ultraprecision Axes of Rotation With Nanometer Level Metrology
,” Penn State University, Ph.D. thesis.5.
Donaldson
, R. R.
, 1972, “A Simple Method for Separating Spindle Error From Test Ball Roundness Error
,” CIRP Ann.
0007-8506, 21
(1
), pp. 125
–126
.6.
Bryan
, J. B.
, and Vanherck
, P.
, 1975, “Unification of Terminology Concerning the Error Motion of Axes of Rotation
,” CIRP Ann.
0007-8506, 24
(2
), pp. 555
–562
.7.
Scientific Technical Committee Me
, 1976, “Unification Document Me: Axes of Rotation
,” CIRP Ann.
0007-8506, 25
(2
), pp. 545
–564
.8.
ANSI∕ASME B89.3.4M Axes of Rotation: Methods for Specifying and Testing Standard, 1985.
9.
Thompson
, D. C.
, 1982, “Compuron: How Round is Round? LLNL Energy and Technology Review
,” pp. 1
–9
.10.
Vanherck
, P.
, and Peters
, J.
, 1973, “Digital Axis of Rotation Measurement
,” CIRP Ann.
0007-8506, 22
(1
), pp. 135
–136
.11.
Mitsui
, K.
, 1982, “Development of a New Measuring Method for Spindle Rotation Accuracy by Three Points Method
,” Proceedings of the 23rd International MTDR Conference
, pp. 115
–121
.12.
Arora
, G. K.
, Mallanna
, C.
, Anantharaman
, B. K.
, and Babin
, P.
, 1977, “Measurement and Evaluation of Spindle Running Error
,” Int. J. Mach. Tool Des. Res.
0020-7357, 17
(2
), pp. 127
–135
.13.
Murthy
, T. S. R.
, Mallanna
, C.
, and Visveswaran
, M. E.
, 1978, “New Methods of Evaluating Axis of Rotation Error
,” CIRP Ann.
0007-8506, 27
(1
), pp. 365
–369
.14.
DeBra
, D. B.
, 1986, “Spindle Metrology—A Student Project
,” presentation at the SME 7th International Precision Machining and Gaging Symposium.15.
Chapman
, P. D.
, 1985, “A Capacitance Based Ultra-Precision Spindle Analyzer
,” J. Jpn. Soc. Precis. Eng.
0374-3543, 7
(3
), pp. 129
–137
.16.
Hansen
, H. J.
, 1988, “A New Dynamic Spindle Analyzer
,” LLNL Preprint—UCRL 99490.17.
Whitehouse
, D. J.
, 1976, “Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,” J. Phys. E
0022-3735, 9
, pp. 531
–536
.18.
Salsbury
, J. G.
, 2003, “Implementation of the Estler Face Motion Reversal Technique
,” J. Soc. Precis. Eng.
0912-0289, 27
(2
), pp. 189
–194
.19.
Evans
, C. J.
, Hocken
, R. J.
, and Estler
, W. T.
, 1996, “Self-Calibration: Reversal, Redundancy, Error Separation, and Absolute Testing
,” CIRP Ann.
0007-8506, 45
(2
), pp. 617
–634
.20.
Mitsui
, K.
, 1982, “Development of a New Measuring Method for Spindle Rotation Accuracy by Three Points Method
,” in Proceedings of the 23rd International MTDR Conference
, pp. 115
–121
.21.
Moore
, D.
, 1989, “Design Considerations in Multi-probe Roundness Measurement
,” J. Phys. E
0022-3735, 22
(6
), pp. 339
–343
.22.
Zhang
, G. X.
, and Wang
, R. K.
, 1993, “Four-Point Method of Roundness and Spindle Error Motion Measurements
,” CIRP Ann.
0007-8506, 42
(1
), pp. 593
–596
.23.
Zhang
, G. X.
, Zhang
, Y. H.
, Yang
, Z. L.
, and Li
, Z.
, 1997, “A Multipoint Method for Spindle Error Motion Measurement
,” CIRP Ann.
0007-8506, 46
(1
), pp. 441
–445
.24.
Chetwynd
, D. G.
, and Siddall
, G. J.
, 1976, “Improving the Accuracy of Roundness Measurement
,” J. Phys. E
0022-3735, 9
(7
), pp. 537
–544
.25.
Estler
, W. T.
, Evans
, C. J.
, and Shao
, L. Z.
, 1997, “Uncertainty Estimation for Multiposition Form Error Metrology
,” J. Soc. Precis. Eng.
0912-0289, 21
(2-3
), pp. 72
–82
.26.
Grejda
, R. D.
, Marsh
, E. R.
, and Vallance
, R. R.
, 2005, “Techniques for Calibrating Spindle With Nanometer Error Motion
,” ASPE Journal of Precision Engineering
, 29
(1
), pp. 113
–123
.27.
Vallance
, R. R.
, Marsh
, E. R.
, and Smith
, P. T.
, 2004, “The Effects of Spherical Target Radius on Capacitive Sensor Measurements
,” ASME J. Manuf. Sci. Eng.
1087-1357, 126
, pp. 822
–829
.28.
Taylor
, B. N.
, and Kuyatt
, C. E.
, 1994, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,” NIST Technical Note 1297.29.
Cox
, M. G.
, and Lazzari
, A.
, 2004, “Modelling and Uncertainty for High-Accuracy Roundness Measurement 10th IMEKO TC7 International Symposium
,” June 30–July 2, 2004, Saint-Petersburg, Russia, pp. 1
–5
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.