Quality control and metrology are critical to improved productivity and yield in MEMS design and production. This paper presents a micrograting interferometer for use in measuring MEMS devices. The sensor is also capable of making dynamic measurements, qualifying the functionality of the MEMS devices. The system employs a phase sensitive diffraction grating for interferometric axial resolution and a microfabricated lens for improved lateral resolution. The microinterferometer is capable of array implementation and can be used to increase the yield of MEMS manufacturing processes. The results generated by a single microinterferometer show good correlation with both analytic models and measurements of the MEMS devices by other metrology tools. The microinterferometer enables measurement of steady state vibration of MEMS devices as well as the development of surface vibration profiles. Initial results presented in this paper also demonstrate the ability to measure quantities such as part surface curvature, as well as reduce low frequency vibrational noise. The use of a deformable diffraction grating is proposed to further enhance the sensor’s capabilities.

1.
Panetta, K., Aluru, N., Bart, S., Blanton, S., Bo¨hringer, K., and Brown, R., 2000, “ITC 2000 Panel Discussion: Testing Challenges for MEMS,” Proceedings of ITC International Test Conference, pp. 1130–1135.
2.
S. D. Senturia, 2002, Microsystem Design, Kluwer Academic Publishers, Norwell.
3.
Grace, R., 2003, “Commercialization issues of MEMS/MST/Micromachines: An Updated Industry Report Card on the Barriers to Commercialization,” NSF Nanotechnology Manufacturing Workshop.
4.
Teague
,
E. C.
,
Scire
,
F. E.
,
Baker
,
S. M.
, and
Jensen
,
S. W.
,
1982
, “
Three-Dimensional Stylus Profilometry
,”
Wear
,
83
, pp.
1
12
.
5.
Albrecht
,
T. R.
,
Akamine
,
S.
,
Carver
,
T. E.
, and
Quate
,
C. F.
,
1990
, “
Microfabrication of Cantilever Styli for Atomic Force Microscope
,”
J. Vac. Sci. Technol. A
,
8
, pp.
3386
3396
.
6.
Manalis
,
S. R.
,
Minne
,
S. C.
,
Atalar
,
A.
, and
Quate
,
C. F.
,
1996
, “
Interdigital Cantilevers for Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
69
, pp.
3944
3946
.
7.
Gordon
,
S. K.
, and
Timothy
,
R. C.
,
1989
, “
Confocal Scanning Optical Microscopy
,”
Phys. Today
, pp.
9
55
62
.
8.
Migot
,
J.
, and
Gorecki
,
C.
,
1983
, “
Measurement of Surface Roughness: Comparison Between a Defect-of-Focus Optical Technique and the Classical Stylus Technique
,”
Wear
,
87
, pp.
39
49
.
9.
Piyawattanametha, W., Patterson, P. R., Su, G. D. J., Toshiyoshi, H., and Wu, M. C., 2001, “A MEMS Noninterferometric Differential Confocal Scanning Optical Microscope,” Transducer, Munich, Germany, 10–14 June.
10.
Cornille, N., Garcia, D., Sutton, M. A., McNeill, S., Orteu, J. J., “Automated 3D Reconstruction Using a Scanning Electron Microscope,” SEM Conference on Experimental and Applied Mechanics, Charlotte, North Carolina, 2–4 June 2003.
11.
Hill
,
M.
,
O’Mahony
,
C.
,
Berney
,
H.
,
Hughes
,
P. J.
,
Hynes
,
E.
, and
Lane
,
W. A.
,
2001
, “
Verification of 2-D MEMS Model Using Optical Profiling Techniques
,”
Opt. Lasers Eng.
,
36
, pp.
169
183
.
12.
Hart
,
M. R.
,
Conant
,
R. A.
,
Lau
,
K. Y.
, and
Muller
,
R. S.
,
2000
, “
Stroboscopic Interferometer System for Dynamic MEMS Characterization
,”
J. Microelectromech. Syst.
,
9
, pp.
409
418
.
13.
Rembe
,
C.
, and
Muller
,
R. S.
,
2002
, “
Measurement System for Full Three-Dimensional Motion Characterization of MEMS
,”
J. Microelectromech. Syst.
,
11
(
5
), pp.
479
488
.
14.
Novak, E., Wan, D., Unruh, P., and Schmit, J., 2003, “Dynamic MEMS Measurement Using a Strobed Interferometric System with Combined Coherence Sensing and Phase Information,” Proceedings of Machines and Processes for Micro-scale and Meso-scale Fabrication, Metrology and Assembly, pp. 104-107.
15.
Rawton, R. A. et al., 1999, “MEMS Characterization Using Scanning Laser Vibrometer,” Proc. SPIE Symposium Microelectronic Manufacturing.
16.
www.veeco.com
17.
www.polytec.com
18.
Graebner
,
J. E.
,
Barber
,
B.
,
Gammel
,
P. L.
,
Greywall
,
D. S.
, and
Gopani
,
S.
,
2001
, “
Dynamic Visualization of Subangstrom High-Frequency Surface Vibrations
,”
Appl. Phys. Lett.
,
78
, pp.
159
161
.
19.
Kim, B., Razavi, H. A., Degertekin, F. L., and Kurfess, T. R., 2002, “Microinterferometer for Noncontact Inspection of MEMS,” The 3rd International Workshop on Microfactories, pp. 77–80.
20.
Kim, B., Razavi, H. A., Degertekin, F. L., and Kurfess, T. R., 2002, “Micromachined Interferometer for Measuring Dynamic Response of Microstructures,” Proceedings of ASME International Mechanical Engineering Congress and Exposition, MEMS Symposium.
21.
Kim, B., Razavi, H. A., Degertekin, F. L., and Kurfess, T. R., 2003, “Micromachined Interferometer for MEMS Metrology,” Proceedings of Machines and Processes for Micro-scale and Meso-scale Fabrication, Metrology and Assembly, pp. 73–78.
22.
Yaralioglu
,
G. G.
,
Atalar
,
A.
,
Manalis
,
S. R.
, and
Quate
,
C. F.
,
1998
, “
Analysis and Design of an Interdigital Cantilever as a Displacement Sensor
,”
J. Appl. Phys.
,
83
(
2
), pp.
7405
7415
.
23.
Schmittdiel, M. C., 2004, Master’s thesis, Georgia Institute of Technology.
24.
Hall
,
N. A.
,
Lee
,
W.
, and
Degertekin
,
F. L.
,
2003
, “
Capacitive Micromachined Ultrasonic Transducers with Diffraction–based Integrated Optical Displacement Detection
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
, pp.
1570
80
.
25.
Kim, B., Schmittdiel, M., Degertekin, F. L., and Kurfess, T. R., 2004, “Deformable Diffraction Grating for Scanning Micro Interferometer Arrays,” Proceedings of 2004 SPIE Symposium on MOEMS Display and Imaging Systems, 5348, pp. 98–107.
You do not currently have access to this content.