In Part II of this paper, a cutting force model for the micro-endmilling process is developed. This model incorporates the minimum chip thickness concept in order to predict the effects of the cutter edge radius on the cutting forces. A new chip thickness computation algorithm is developed to include the minimum chip thickness effect. A slip-line plasticity force model is used to predict the force when the chip thickness is greater than the minimum chip thickness, and an elastic deformation force model is employed when the chip thickness is less than the minimum chip thickness. Orthogonal, microstructure-level finite element simulations are used to calibrate the parameters of the force models for the primary metallurgical phases, ferrite and pearlite, of multiphase ductile iron workpieces. The model is able to predict the magnitudes of the forces for both the ferrite and pearlite workpieces as well as for the ductile iron workpieces within 20%.

1.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
126
(4), pp.
695
705
.
2.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
202
209
.
3.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
693
699
.
4.
Wu
,
D. W.
,
1989
, “
A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes
,”
ASME J. Eng. Ind.
,
111
, pp.
37
47
.
5.
Endres
,
W. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1995
, “
A Dual Mechanism Approach to the Prediction of Machining Forces, Part I: Model Development
,”
ASME J. Eng. Ind.
,
117
, pp.
526
533
.
6.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmuri
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
CIRP Ann.
,
42
, pp.
91
94
.
7.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
, pp.
327
330
.
8.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
,
2002
, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
,
XXX
, pp.
247
254
.
9.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschler
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
,
50
, pp.
61
64
.
10.
Elbestawi
,
M. A.
,
Ismail
,
F.
,
Du
,
R.
, and
Ullagaddi
,
B. C.
,
1994
, “
Modeling Machining Dynamics Including Damping in the Tool-Workpiece Interface
,”
ASME J. Eng. Ind.
,
116
, pp.
435
439
.
11.
Shawky
,
A. M.
, and
Elbestawi
,
M. A.
,
1997
, “
An Enhanced Dynamic Model in Turning Including the Effect of Ploughing Forces
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
10
20
.
12.
Narayanan, K., Ranganath, S., and Sutherland, J. W., 1997, “A Dynamic Model of the Cutting Force System in Peripheral Milling Characterizing the Effects of Flank Face Interference,” Proc. of ASME Annual Meeting, ASME, New York, MED Vol 6-2, pp. 143–151.
13.
Chuzhoy
,
L.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Bammann
,
D. J.
,
2002
, “
Microstructure-Level Modeling of Ductile Iron Machining
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
162
169
.
14.
Nakayama
,
K.
, and
Tamura
,
K.
,
1968
, “
Size Effect in Metal-Cutting Force
,”
ASME J. Eng. Ind.
,
90
, pp.
119
126
.
15.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A Study of Apparent Negative Rake Angle and Its Effects on Shear Angle During Orthogonal Cutting With Edge-Radiused Tools
,”
Trans. NAMRI/SME
,
XXVIII
, pp.
197
202
.
16.
Oxley, P. L. B., 1989, The Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley and Sons, New York.
17.
Shaw
,
M. C.
, and
DeSalvo
,
D. J.
,
1970
, “
A New Approach to Plasticity and Its Application to Blunt Two-Dimensional Indenters
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
92
, pp.
469
479
.
18.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
,
11
, pp.
168
175
.
19.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
ASME J. Appl. Mech.
,
18
, pp.
405
413
.
20.
Shaw
,
M. C.
, and
Finnie
,
I.
,
1955
, “
The Shear Stress in Metal Cutting
,”
Trans. ASME
,
77
, pp.
115
126
.
21.
Kline
,
W. A.
, and
DeVor
,
R. E.
,
1983
, “
The Effect of Runout on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
,
23
, pp.
123
140
.
22.
Chuzhoy, L., DeVor, R. E., Kapoor, S. G., Beaudoin, A. J., and Bammann, D. J., 2001, “Machining Model of Ductile Iron and Its Constituents, Part I: Estimation of Material Model Parameters and Their Validation,” Proc. of ASME Manufacturing Engineering Div., ASME, New York, MED Vol. 12.
You do not currently have access to this content.