The purpose of this study is to develop an effective way of automated deburring of precision components. A high power laser is proposed as a deburring tool for complex part edges and burrs. Experimental results for carbon steel and stainless steel are presented. Also, the prediction of the HAZ and cutting profile of laser-deburred parts using finite element method is presented and compared with the experimental results. This study shows that FEM analysis can effectively predict the thermal affected zone of the material and that the technique can be applied to precision components.

1.
Ko. S. L., and Dornfeld, D. A., 1989, “Analysis and Modeling of Burr Formation and Breakout in Metal,” Proc., Symposium on Mechanics of Deburring and Surface Finishing Processes, 1989 ASME Winter Annual Meeting, Dec. pp. 79–92.
2.
Gillespie
,
L. K.
,
1979
, “
Deburring Precision Miniature Parts
,”
Precis. Eng.
,
1
, No.
4
, July, pp.
189
198
.
3.
De Litzia
,
A.
,
1986
, “
Mechanical Deburring with Centrifugal Blast Equipment
,”
Advancement in Surface Treatment Technology
,
2
, pp.
241
254
.
4.
Kittredge, J. B., 1989, “Vibratory Finishing Equipment,” SME Technical Paper, MR 89–149.
5.
April, Alwerfalli, D. R., et al., 1975, “Deburring Metal Parts,” American Machinist, 55–62.
6.
Sonego
,
R. A.
,
1988
, “
Electrolyte Deburring
,”
Products Finishing
,
53
, No.
2
, Nov, pp.
57
62
.
7.
Roberts, T. C., 1985, “Abrasive Jet Machining-Nontraditional Deburring,” Proc. Nontraditional Machining Conference, Dec. pp. 105–110.
8.
Manz, Stephen R. G., 1990, “Automated Robotic Deburring Using Acoustic Emission Monitoring,” Master Report, Univ. of California, Berkeley, Dept. of Mechanical Engineering, May.
9.
Thomas
,
M.
, et al.
, 1987, “Control of Tool/Workpiece Contact Force with the Application to Robotic Deburring,” IEEE J, of Rob, and Automat., RA-3, No. 1, Feb.
10.
Masaki, T., and Dornfeld, D. A., 1987, “Acoustic Emission Feedback for Deburring Automation,” ASME Winter Annual Meeting, Robotics, Theory and Applications, Dec.
11.
Chryssolouris, George, 1990, Laser Machining, Springer-Verlag, New York.
12.
Wei
,
P. S.
, and
Chiou
,
L. R.
,
1988
, “
Molten Metal Flow Around the Base of a Cavity During a High Energy Beam Penetrating Process
,”
ASME J. Heat Transfer
,
110
, Nov., pp.
918
923
.
13.
Wei
,
P. S.
, and
Ho
,
J. Y.
,
1990
, “
Energy Considerations in High Energy Beam Drilling
,”
Int. J. Heat Mass Transf.
,
33
, No.
10
, pp.
2207
2217
.
14.
Geiger
,
M.
, et al.
,
1988
, “
Laser Cutting of Steel Sheets
,”
Laser Assisted Processing, SPIE
,
1022
, pp.
20
33
.
15.
Cai, L., 1996, “Model Based Process Planning of a Laser Cutting,” Ph.D dissertation, U. C. Berkeley
16.
Lee
,
S. H.
, and
Dornfeld
,
D. A.
,
2001
, “
Precision Laser Deburring and Acoustic Emission Feedback
,”
ASME J. Manuf. Sci. Eng.
,
123
May, pp.
356
364
.
17.
Neimeyer
,
R.
,
Smith
,
R. N.
, and
Kaminski
,
D. A.
,
1993
, “
Effects of Operating Parameters on Surface Quality for Laser Cutting of Mild Steel
,”
ASME J. Eng. Ind.
,
115
, No.
3
, pp.
359
362
.
18.
Yilbas
,
B. S.
, et al.
,
1992
, “
Investigation into Development of Liquid Layer and Formation of Surface Plasma during CO2 Laser Cutting Process
,”
Proc. of The Institution of Mechanical Engineering Part B-Jour. Of Eng. Manufacture
,
206
, No.
4
, pp.
287
298
.
19.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution during Welding and Cutting
,”
Weld. J. (Miami)
,
20
, No.
5
, pp.
220
234
.
20.
Paek
,
U. C.
, and
Gagliano
,
F. P.
,
1972
, “
Thermal Analysis of Laser Drilling Process
,”
IEEE J. Quantum Electron.
,
QE-8
, No.
2
, pp.
112
119
.
21.
Mehrabian
,
R.
, and
Hsu
,
S. C.
,
1978
, “
Laser Surface Melting and Solidification-Moving Heat Flux
,”
Metall. Trans. B
,
9B
, pp.
221
229
.
22.
Glass, J. M., et al., 1977, “Heat Transfer in Metallic Glasses during Laser Cutting,” Heat Transfer in Manufacturing and Materials Processing, HTD, Vol., 13, pp. 31–38.
23.
Nakao
,
Y.
, and
Nishimoto
,
K.
,
1986
, “
Desensitization of Stainless Steel by Laser Surface Heat Treatment
,”
Trans. of Japan Welding Soc.
,
17
, No.
1
, pp.
84
92
.
24.
Masumoto, I., and Shinoda, T., 1990, “Weld Decay Recovery by Laser Beam Surfacing of Austenite Stainless Welded Joints,” Trans. of the Japan Welding Soc., April, pp. 11–17.
25.
Rajaram, S., and Coyle, R. J., 1983, “Numerical Modeling of Laser Material Processing,” Proc. of the Materials Processing Symp. ICALEO 83, Vol. 38, pp. 216–223.
26.
Cline, H. E., and Anthoy, T. R., 1977, “Heat Treating and Melting of Material with a Scanning Laser or Electron Beam,” J. Appl. Phys., 48, No. 9, Sept..
27.
Petring, D, Abels, P., and Beyer, E., 1988, “Absorption Distribution of Idealized Cutting Front Geometries and its Significance for Laser Beam Cutting,” Proc. of SPIE-High Power CO2 Laser Systems and Applications, Vol. 1020, pp. 123–131.
28.
Schulz
,
W.
,
Becker
,
D.
,
Franke
,
J.
,
Kemmerling
,
R.
, et al.
,
1991
, “
Heat Conduction Losses in Laser Cutting of Metals
,”
J. Phys. D-Applied Physics
,
26
, No.
9
, pp.
1357
1363
.
29.
Lange
,
K.
, et al.
, 1992, “Schnittfla¨chenqualita¨t beim Schneiden, Beschneiden und Lochen von Werkstu¨cken aus Metall,” VDI-RICHTLINIEN 2906, Blatt 8 .
30.
American Welding Society, 1991, Welding Hand Book, 8th edition, Vol. 2.
31.
Schey, John A., 1987, Introduction to Manufacturing Processes, 2nd Edition, McGraw Hill.
32.
Peckner, D., and Bernstein, I. M., 1977, Handbook of Stainless Steel, McGraw Hill.
33.
Smithells, C. J., 1992, Smithells Metals Reference Book, 7th edition, Butterworth-Heinemann.
34.
Green, A. E., and Naghdi, P. M., 1977, “A General Theory of an Elastic-Plastic Continuum,” Arch. Ration. Mech. Anal., 17 .
35.
Wriggers
,
P.
, and
Miehe
,
C.
, et al.
,
1992
, “
On the Coupled Thermomechanical Treatment of Necking Problems via Finite Element Methods
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
869
883
.
36.
Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
37.
Habbit, Karlsson and Sorenson, Inc., 1989, “ABAQUS Theory Manual,” Version 4.8.
38.
Sheng
,
P.
, et al.
, 1995, “Analysis of Heat Affected Zone Formation for Laser Cutting of Stainless Steel,” J. Mater. Process. Technol., pp. 879–892.
You do not currently have access to this content.