Least squares (LS) estimation has been extensively used for parameter identification and model-based diagnosis. However, if ill-conditioning is present, the LS estimation approach tends to generate imprecise results and thus impacts the diagnostic performance. In this paper, an adjusted least squares approach is proposed to deal with the ill-conditioning problem in the diagnosis of compliant sheet metal assembly process. The adjusted LS approach is able to overcome the ill-conditioning and give precise results for certain linear combinations of the faults. Simulations and industrial case study are conducted to compare the diagnostic performance of the adjusted and regular LS approach. In addition, a two-stage assembly model is developed for further fault isolation with inclusion of additional measurement information.

1.
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Fixture Failure Diagnosis for Autobody Assembly Using Pattern Recognition
,”
ASME J. Eng. Industry
,
118
, No.
1
, pp.
55
66
.
2.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
4
, pp.
756
762
.
3.
Ding, Y., Ceglarek, D., and Shi, J., 2000, “Modeling and Diagnostics of Multi-Station Assembly Processes: Part II—Fault Diagnostics,” 2000 Japan-USA Symposium on Flexible Automation, Ann Arbor, MI.
4.
Wang
,
Y.
, and
Nagarkar
,
S. R.
,
1999
, “
Locator and Sensor Placement for Automated Coordinate Checking Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
4
, pp.
709
719
.
5.
Khan
,
A.
, and
Ceglarek
,
D.
,
2000
, “
Optimization for Fault Diagnosis in Muiti-Fixture Assembly Systems with Distributed Sensind
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
1
, pp.
215
226
.
6.
Khan
,
A.
,
Ceglarek
,
D.
,
Shi
,
J.
,
Ni
,
J.
, and
Woo
,
T. C.
,
1999
, “
Sensor Optimization for Fault Diagnosis in Single Fixture Systems: A Methodology
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
1
, pp.
109
117
.
7.
Shiu
,
B.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
1997
, “
Flexible Beam-Based Modeling of Sheet Metal Assembly for Dimensional Control
,”
Trans. of NAMRI
,
XXV
, pp.
49
54
.
8.
Chang
,
M. H.
, and
Gossard
,
D. C.
,
1997
, “
Modeling the Assembly of Compliant, Non-ideal Parts
,”
Comput.-Aided Des.
,
29
, No.
10
, pp.
701
708
.
9.
Rong
,
Q.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
4
,
773
780
.
10.
Apley
,
D.
, and
Shi
,
J.
,
1998
, “
Diagnosis of Multiple Fixture Faults in Panel Assembly
,”
ASME J. Manuf. Sci. Eng.
,
120
, No.
4
, pp.
793
801
.
11.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, John Wiley & Sons.
12.
Koh
,
C. G.
, and
See
,
L. M.
,
1994
, “
Identification and Uncertainty Estimation of Structural Parameters
,”
J. Eng. Mech.
,
120
, No.
6
, pp.
1219
1236
.
13.
Beck
,
J. V.
, and
Woodbury
,
K. A.
,
1998
, “
Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis
,”
Meas. Sci. Technol.
,
9
, pp.
839
847
.
14.
Silvey, S. D., 1969, “Multicollinearity and Imprecise Estimation,” Technometrics, No. 3, pp. 539–552.
15.
Golub, G. H., and Van Loan, C. F., 1983, Matrix Computations, The Johns Hopkins University Press.
16.
Van Huffel
,
S.
, and
Vandewalle
,
J.
,
1987
, “
Subset Selection Using the Total Least Squares Approach in Collinearity Problems with Errors in the Variables
,”
Linear Algebr. Appl.
,
88/89
, pp.
695
714
.
17.
Rong, Q., Ceglarek, D., and Shi, J., 1999, “Methodology of Multiple Faults Diagnostics in Compliant Structure Assemblies,” University of Michipan-Ann Arbor and the University of Wisconsin-Madison.
18.
Hasan
,
W. M.
, and
Viola
,
E.
,
1997
, “
Use of Singular Value Decomposition Method to Detect Ill-conditioning of Structural Identification Problems
,”
Comput. Struct.
,
63
, No.
2
, pp.
267
275
.
19.
Klema
,
V. C.
, and
Laub
,
A. J.
,
1980
, “
The Singular Value Decomposition: Its Computation and Some Applications
,”
IEEE Trans. Autom. Control
,
AC-25
, No.
2
, pp.
164
173
.
20.
Penny
,
J. E. T.
,
Friswell
,
M. I.
, and
Garvey
,
S. D.
,
1994
, “
Automatic Choice of Measurement Locations for Dynamic Testing
,”
AIAA J.
,
32
, pp.
407
414
.
21.
Mottershead
,
J. E.
, and
Foster
,
C. D.
,
1991
, “
On the Treatment of Ill-conditioning in Spatial Parameter Estimation from Measured Vibration Data
,”
Mech. Syst. Signal Process.
,
5
, pp.
139
154
.
22.
Johnson, R. A., and Wichern, D. W., 1992, Applied Multivariate Statistical Analysis, Prentice Hall, New Jersey.
23.
Fedorov, V. V., 1972, Theory of Optimal Experiments, Academic Press, New York.
You do not currently have access to this content.