Abstract

The flexible and adaptable nature of continuum soft robots makes them applicable to a wide range of operations not easily obtainable with conventional rigid-body robots. Thus, soft robots can be used in various operations such as manipulation tasks, minimally invasive surgery operations, robotic rehabilitation/wearable devices, inspection, and surveillance tasks. Unfortunately, the continuous nature of these robotic systems leads to significant modeling and control challenges. Presently, there are various modeling perspectives. However, a detailed review shows that current models are often characterized by problems such as high computational costs, quasi-static assumptions, imprecise inclusion of boundary conditions, spillover instability, etc. These problems limit the accuracy of the resulting model, requiring more effective modeling and control strategies. Therefore, this paper is aimed at improving the state of the art and science of current models by providing more effective strategies for the problems encountered. In this regard, the dynamic modeling of a two-link tendon-driven flexible manipulator based on hybrid parameter multibody system methodology will be presented to demonstrate these strategies. Using the model, path-planned dynamic controls based on pole placement, linear quadratic regulator, and sliding mode control methods will be implemented for a continuous time-varying path. Also, a comparison of the performance of the control methods, in addition to parametric studies for the optimal tendon connection points, will be presented. Results showed that the benefits of the modeling approach and strategies employed led to a highly accurate, real-time performance for the complex motions of the manipulator system.

References

1.
Wang
,
Z.
,
Furuta
,
H.
,
Hirai
,
S.
, and
Kawamura
,
S.
,
2021
, “
A Scooping-Binding Robotic Gripper for Handling Various Food Products
,”
Front. Robot. AI
,
8
, pp.
1
13
.
2.
Hughes
,
J.
,
Culha
,
U.
,
Giardina
,
F.
,
Guenther
,
F.
,
Rosendo
,
A.
, and
Iida
,
F.
,
2016
, “
Soft Manipulators and Grippers: A Review
,”
Front. Robot. AI
,
3
, pp.
1
12
.
3.
Runciman
,
M.
,
Darzi
,
A.
, and
Mylonas
,
G. P.
,
2019
, “
Soft Robotics in Minimally Invasive Surgery
,”
Soft Rob.
,
6
(
4
), pp.
423
443
.
4.
Zhu
,
J.
,
Lyu
,
L.
,
Xu
,
Y.
,
Liang
,
H.
,
Zhang
,
X.
,
Ding
,
H.
, and
Wu
,
Z.
,
2021
, “
Intelligent Soft Surgical Robots for Next-Generation Minimally Invasive Surgery
,”
Adv. Intell. Syst.
,
3
(
5
), p.
2100011
.
5.
Rose
,
C. G.
, and
O’Malley
,
M. K.
,
2018
, “
Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity
,”
IEEE Robot. Autom. Lett.
,
4
(
1
), pp.
73
80
.
6.
Shiota
,
K.
,
Kokubu
,
S.
,
Tarvainen
,
T. V. J.
,
Sekine
,
M.
,
Kita
,
K.
,
Huang
,
S. Y.
, and
Yu
,
W.
,
2019
, “
Enhanced Kapandji Test Evaluation of a Soft Robotic Thumb Rehabilitation Device by Developing a Fiber-Reinforced Elastomer-Actuator Based 5-Digit Assist System
,”
Rob. Auton. Syst.
,
111
, pp.
20
30
.
7.
Liu
,
X.
,
Song
,
M.
,
Fang
,
Y.
,
Zhao
,
Y.
, and
Cao
,
C.
,
2022
, “
Worm-Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection
,”
Adv. Intell. Syst.
,
4
(
1
), p.
2100128
.
8.
Yaming
,
W.
,
Feng
,
J.
,
Yahui
,
Y.
,
Jiafeng
,
Y.
,
Yaoyao
,
W.
,
Hao
,
G.
, and
Bai
,
C.
,
2020
, “
An Inspection Continuum Robot With Tactile Sensor Based on Electrical Impedance Tomography for Exploration and Navigation in Unknown Environment
,”
Ind. Rob.
,
47
(
1
), pp.
121
130
.
9.
Amouri
,
A.
,
Zaatri
,
A.
, and
Mahfoudi
,
C.
,
2018
, “
Dynamic Modeling of a Class of Continuum Manipulators in Fixed Orientation
,”
J. Intell. Robot. Syst.
,
91
(
3–4
), pp.
413
424
.
10.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2019
, “
A New Approach to Model Constant Curvature Continuum Robot Dynamics
,”
ASME 2019 Dynamic Systems and Control Conference (DSCC 2019)
,
Park City, UT
,
Oct. 8–11
, Vol. 3, pp.
1
8
.
11.
Singh
,
I.
,
Amara
,
Y.
,
Melingui
,
A.
,
Mani Pathak
,
P.
, and
Merzouki
,
R.
,
2018
, “
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves
,”
Soft Rob.
,
5
(
4
), pp.
425
442
.
12.
Gonthina
,
P. S.
,
Kapadia
,
A. D.
,
Godage
,
I. S.
, and
Walker
,
I. D.
,
2019
, “
Modeling Variable Curvature Parallel Continuum Robots Using Euler Curves
,”
Proceedings—IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
1679
1685
.
13.
Della Santina
,
C.
,
Katzschmann
,
R. K.
,
Bicchi
,
A.
, and
Rus
,
D.
,
2018
, “
Dynamic Control of Soft Robots Interacting With the Environment
,”
2018 IEEE International Conference on Soft Robotics 2018
,
Livorno, Italy
,
Apr. 24–28
, pp.
46
53
.
14.
Wang
,
C.
,
Frazelle
,
C. G.
,
Wagner
,
J. R.
, and
Walker
,
I. D.
,
2021
, “
Dynamic Control of Multisection Three-Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
777
788
.
15.
Bieze
,
T. M.
,
Largilliere
,
F.
,
Kruszewski
,
A.
,
Zhang
,
Z.
,
Merzouki
,
R.
, and
Duriez
,
C.
,
2018
, “
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators
,”
Soft Rob.
,
5
(
3
), pp.
348
364
.
16.
Coevoet
,
E.
,
Morales-Bieze
,
T.
,
Largilliere
,
F.
,
Zhang
,
Z.
,
Thieffry
,
M.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
, et al
,
2017
, “
Software Toolkit for Modeling, Simulation, and Control of Soft Robots
,”
Adv. Rob.
,
31
(
22
), pp.
1208
1224
.
17.
Choi
,
C.
,
Schwarting
,
W.
,
DelPreto
,
J.
, and
Rus
,
D.
,
2018
, “
Learning Object Grasping for Soft Robot Hands
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2370
2377
.
18.
Thuruthel
,
T. G.
,
Falotico
,
E.
,
Renda
,
F.
, and
Laschi
,
C.
,
2019
, “
Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
127
134
.
19.
Gazzola
,
M.
,
Dudte
,
L. H.
,
McCormick
,
A. G.
, and
Mahadevan
,
L.
,
2018
, “
Forward and Inverse Problems in the Mechanics of Soft Filaments
,”
R. Soc. Open Sci.
,
5
(
6
), pp.
1
35
.
20.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
.
21.
Zhang
,
L.
, and
Liu
,
J.
,
2013
, “
Adaptive Boundary Control for Flexible Two-Link Manipulator Based on Partial Differential Equation Dynamic Model
,”
IET Control Theory Appl.
,
7
(
1
), pp.
43
51
.
22.
Mishra
,
N.
, and
Singh
,
S. P.
,
2019
, “
Dynamic Analysis of Two-Link Flexible Manipulator Using FEM Undergoing Bending-Torsional Vibrations
,”
ACTA Tech. Napocensis—Ser. Appl. Math. Mech. Eng.
,
62
(
3
), pp.
431
448
.
23.
Barhorst
,
A. A.
,
2004
, “
Systematic Closed Form Modeling of Hybrid Parameter Multiple Body Systems
,”
Int. J. Non Linear Mech.
,
39
(
1
), pp.
63
78
.
24.
Barhorst
,
A. A.
,
2004
, “
On the Efficacy of Pseudo-Coordinates—Part 1: Moving Interior Constraints
,”
Int. J. Non Linear Mech.
,
39
(
1
), pp.
123
135
.
25.
Hariharesan
,
S.
, and
Barhorst
,
A. A.
,
1999
, “
Modelling, Simulation and Experimental Verification of Contact/Impact Dynamics in Flexible Multi-Body Systems
,”
J. Sound Vib.
,
221
(
4
), pp.
709
732
.
26.
Ezeanya
,
E. K.
, and
Barhorst
,
A. A.
,
2022
, “
Joint Control With Passive Damping for a Planar Two-Link Tendon-Driven Flexible Manipulator
,”
Proceedings of the ASME IMECE2022
,
Columbus, OH
,
Oct. 30–Nov. 3
, pp.
1
8
.
27.
Ezeanya
,
E. K.
,
2022
, “
Dynamic Modeling and Control of a Two-Link Tendon-Driven Flexible Manipulator Based on the Hybrid Parameter Multiple Body Systems (HPMBS) Methodology
,”
Doctoral dissertation
,
University of Louisiana at Lafayette
,
Lafayette, LA
.
You do not currently have access to this content.