Abstract

The simultaneous liquid–liquid flow usually manifests various flow configurations due to a diverse range of fluid properties, flow-controlling processes, and equipment. This study investigates the performance of machine learning (ML) algorithms to classify nine oil–water flow patterns (FPs) in the horizontal pipe using liquid and pipe geometric properties. The MLs include Support Vector Machine, Ensemble learning, Random Forest, Multilayer Perceptron Neural Network, k-Nearest Neighbor, and weighted Majority Voting (wMV). Eleven hundred experimental data points for nine FPs are extracted from the literature. The data are balanced using the synthetic minority over-sampling technique during the MLs training phase. The MLs’ performance is evaluated using accuracy, sensitivity, specificity, precision, F1-score, and Matthews Correlation Coefficient. The results show that the wMV can achieve 93.03% accuracy for the oil–water FPs. Seven out of nine FPs are classified with more than 93% accuracies. A Friedman’s test and Wilcoxon Sign-Rank post hoc analysis with Bonferroni correction show that the FPs accuracy using wMV is significantly higher than using the MLs individually (p < 0.05). This study demonstrated the capability of MLs in automatically classifying the oil–water FPs using only the fluids’ and pipe’s properties and is crucial for designing an efficient production system in the petroleum industry.

References

1.
Brauner
,
N.
,
2003
, “Liquid-Liquid Two-Phase Flow Systems,”
Modelling and Experimentation in Two-Phase Flow
,
V.
Bertola
, ed., International Centre for Mechanical Sciences, vol. 450,
Springer
,
Vienna
, pp.
221
279
.
2.
Wang
,
W.
,
Cheng
,
W.
,
Li
,
K.
,
Lou
,
C.
, and
Gong
,
J.
,
2013
, “
Flow Patterns Transition Law of Oil-Water Two-Phase Flow Under a Wide Range of Oil Phase Viscosity Condition
,”
J. Appl. Math.
,
2013
, pp.
1
8
.
3.
Tan
,
J.
,
Jing
,
J.
,
Hu
,
H.
, and
You
,
X.
,
2018
, “
Experimental Study of the Factors Affecting the Flow Pattern Transition in Horizontal Oil–Water Flow
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
534
545
.
4.
Osundare
,
O. S.
,
Falcone
,
G.
,
Lao
,
L.
, and
Elliott
,
A.
,
2020
, “
Liquid-Liquid Flow Pattern Prediction Using Relevant Dimensionless Parameter Groups
,”
Energies (Basel)
,
13
(
17
), p.
4355
.
5.
Wahid
,
M. F.
,
Tafreshi
,
R.
,
Khan
,
Z.
, and
Retnanto
,
A.
,
2021
, “
Prediction of Pressure Gradient for Oil-Water Flow: A Comprehensive Analysis on the Performance of Machine Learning Algorithms
,”
J. Pet. Sci. Eng.
,
208
, p.
109265
.
6.
Khan
,
Z.
,
Tafreshi
,
R.
,
Wahid
,
M. F.
, and
Retnanto
,
A.
,
2021
, “
Prediction of Pressure Drops In Liquid-Liquid Two-Phase Flow Across Circular Channels
,”
Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering OMAE2021
, p. Paper No.
OMAE2021-62861
.
7.
Höhne
,
T.
,
Rayya
,
A.
, and
Montoya
,
G.
,
2020
, “
Numerical Modelling of Horizontal oil-Water Pipe Flow
,”
Energies (Basel)
,
13
(
19
), p.
5042
.
8.
Xu
,
X.-X.
,
2007
, “
Study on Oil–Water Two-Phase Flow in Horizontal Pipelines
,”
J. Pet. Sci. Eng.
,
59
(
1–2
), pp.
43
58
.
9.
Du
,
M.
,
Yin
,
H.
,
Chen
,
X.
, and
Wang
,
X.
,
2018
, “
Oil-in-Water Two-Phase Flow Pattern Identification From Experimental Snapshots Using Convolutional Neural Network
,”
IEEE Access
,
7
, pp.
6219
6225
.
10.
Lin
,
Z.
,
Liu
,
X.
,
Lao
,
L.
, and
Liu
,
H.
,
2020
, “
Prediction of Two-Phase Flow Patterns in Upward Inclined Pipes via Deep Learning
,”
Energy
,
210
, p.
118541
.
11.
Torres
,
C. F.
,
Mohan
,
R. S.
,
Gomez
,
L. E.
, and
Shoham
,
O.
,
2016
, “
Oil–Water Flow Pattern Transition Prediction in Horizontal Pipes
,”
AME J. Energy Resour. Technol.
,
138
(
2
).
12.
Ahmed
,
S. A.
, and
John
,
B.
,
2021
, “
Dimensionless Parameters to Identify Transition From Stratified to Non-Stratified Flow Pattern in Liquid–Liquid Horizontal Pipe Flow
,”
Flow Turbul. Combust.
,
107
(
3
), pp.
1
29
.
13.
Hu
,
H.
,
Jing
,
J.
,
Vahaji
,
S.
,
Tan
,
J.
, and
Tu
,
J.
,
2020
, “
Investigation of the Flow Pattern Transition Behaviors of Viscous Oil–Water Flow in Horizontal Pipes
,”
Ind. Eng. Chem. Res.
,
59
(
47
), pp.
20892
20902
.
14.
Osundare
,
O. S.
,
Lao
,
L.
, and
Falcone
,
G.
,
2021
, “A Novel Horizontal Liquid–Liquid Flow Pattern Map Using Dimensionless Number Groups,”
Advances in Heat Transfer and Thermal Engineering
,
C.
Wen
, and
Y.
Yan,
eds.,
Springer
,
Singapore
, pp.
721
725
.
15.
Trallero
,
J. L.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
1997
, “
A Study of Oil-Water Flow Patterns in Horizontal Pipes
,”
SPE Prod. Facil.
,
12
(
03
), pp.
165
172
.
16.
Luo
,
X.
,
,
G.
,
Zhang
,
W.
,
He
,
L.
, and
,
Y.
,
2017
, “
Flow Structure and Pressure Gradient of Extra Heavy Crude Oil-Water Two-Phase Flow
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
174
181
.
17.
Wang
,
Z.
,
Zhang
,
Q.
,
Zeng
,
Q.
, and
Wei
,
J.
,
2018
, “
A Unified Model of Oil/Water Two-Phase Flow in the Horizontal Wellbore
,”
SPE J.
,
22
(
1
), pp.
353
364
.
18.
Ahmed
,
S. A.
, and
John
,
B.
,
2018
, “
Liquid—Liquid Horizontal Pipe Flow—A Review
,”
J. Pet. Sci. Eng.
,
168
, pp.
426
447
.
19.
Wu
,
Y.
,
Guo
,
H.
,
Song
,
H.
, and
Deng
,
R.
,
2022
, “
Fuzzy Inference System Application for Oil-Water Flow Patterns Identification
,”
Energy
,
239
(Part D), p. 122359.
20.
Shirley
,
R.
,
Chakrabarti
,
D. P.
, and
Das
,
G.
,
2012
, “
Artificial Neural Networks in Liquid-Liquid Two-Phase Flow
,”
Chem. Eng. Commun.
,
199
(
12
), pp.
1520
1542
.
21.
Desamala
,
A. B.
,
Vijayan
,
V.
,
Dasari
,
A.
,
Dasmahapatra
,
A. K.
, and
Mandal
,
T. K.
,
2016
, “
Prediction of Oil-Water Flow Patterns, Radial Distribution of Volume Fraction, Pressure and Velocity During Separated Flows in Horizontal Pipe
,”
J. Hydrodyn.
,
28
(
4
), pp.
658
668
.
22.
Mask
,
G.
,
Wu
,
X.
, and
Ling
,
K.
,
2019
, “
An Improved Model for Gas-Liquid Flow Pattern Prediction Based on Machine Learning
,”
J. Pet. Sci. Eng.
,
183
, p.
106370
.
23.
Quintino
,
A. M.
,
da Rocha
,
D. L. L. N.
,
Fonseca Júnior
,
R.
, and
Rodriguez
,
O. M. H.
,
2021
, “
Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning
,”
ASME J. Fluids Eng.
,
143
(
3
), p. 031401.
24.
Alhashem
,
M.
,
2019
, “
Supervised Machine Learning in Predicting Multiphase Flow Regimes in Horizontal Pipes
,”
Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference
,
Abu Dhabi, UAE
,
Nov. 11–14
.
25.
Shanthi
,
C.
, and
Pappa
,
N.
,
2017
, “
An Artificial Intelligence Based Improved Classification of two-Phase Flow Patterns with Feature Extracted From Acquired Images
,”
ISA Trans.
,
68
, pp.
425
432
.
26.
Li
,
Z.-C.
, and
Fan
,
C.-L.
,
2020
, “
A Novel Method to Identify the Flow Pattern of Oil–Water Two-Phase Flow
,”
J Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3723
3732
.
27.
Liu
,
W.
,
Tan
,
C.
, and
Dong
,
F.
,
2021
, “
Doppler Spectrum Analysis and Flow Pattern Identification of Oil-Water Two-Phase Flow Using Dual-Modality Sensor
,”
Flow Meas. Instrum.
,
77
, p.
101861
.
28.
Dasari
,
A.
,
Desamala
,
A. B.
,
Dasmahapatra
,
A. K.
, and
Mandal
,
T. K.
,
2013
, “
Experimental Studies and Probabilistic Neural Network Prediction on Flow Pattern of Viscous Oil–Water Flow Through a Circular Horizontal Pipe
,”
Ind. Eng. Chem. Res.
,
52
(
23
), pp.
7975
7985
.
29.
Zampereti
,
L. O.
,
Quintino
,
A. M.
, and
Rodriguez
,
O. M. H.
,
2022
, “Data-Driven Machine Learning Applied to Liquid-Liquid Flow Pattern Prediction,”
Lecture Notes in Mechanical Engineering
,
Springer
,
New York
, pp.
123
129
.
30.
Chakrabarti
,
D. P.
,
Pilgrim
,
A.
,
Sastry
,
M. K. S.
, and
Das
,
G.
,
2010
, “
Identification of Liquid-Liquid Flow Pattern in a Horizontal Pipe Using Artificial Neural Networks
,”
Chem. Eng. Commun.
,
198
(
2
), pp.
273
285
.
31.
Chakrabarti
,
D. P.
,
Das
,
G.
, and
Ray
,
S.
,
2005
, “
Pressure Drop in Liquid-Liquid Two Phase Horizontal Flow: Experiment and Prediction
,”
Chem. Eng. Technol.: Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol.
,
28
(
9
), pp.
1003
1009
.
32.
Lovick
,
J.
, and
Angeli
,
P.
,
2004
, “
Experimental Studies on the Dual Continuous Flow Pattern in Oil–Water Flows
,”
Int. J. Multiphase Flow
,
30
(
2
), pp.
139
157
.
33.
Nädler
,
M.
, and
Mewes
,
D.
,
1997
, “
Flow Induced Emulsification in the Flow of Two Immiscible Liquids in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
23
(
1
), pp.
55
68
.
34.
Rodriguez
,
O. M. H.
, and
Oliemans
,
R. V. A.
,
2006
, “
Experimental Study on Oil–Water Flow in Horizontal and Slightly Inclined Pipes
,”
Int. J. Multiphase Flow
,
32
(
3
), pp.
323
343
.
35.
Abduvayt
,
P.
,
Manabe
,
R.
,
Watanabe
,
T.
, and
Arihara
,
N.
,
2004
, “
Analysis of Oil-Water Flow Tests in Horizontal, Hilly-Terrain, and Vertical Pipes
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
.
36.
Elseth
,
G.
,
2001
, “
An Experimental Study of Oil/Water Flow in Horizontal Pipes
,”
PhD thesis
,
The Norwegian University of Science and Technology
,
Norway
.
37.
Trallero
,
J. L.
,
1995
, “
Oil-Water Flow Patterns in Horizontal Pipes
,”
PhD thesis
,
The University of Tulsa
,
Tulsa, OK
.
38.
Abubakar
,
A.
,
Al-Wahaibi
,
Y.
,
Al-Wahaibi
,
T.
,
Al-Hashmi
,
A.
,
Al-Ajmi
,
A.
, and
Eshrati
,
M.
,
2015
, “
Effect of Low Interfacial Tension on Flow Patterns, Pressure Gradients and Holdups of Medium-Viscosity Oil/Water Flow in Horizontal Pipe
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
58
67
.
39.
Valle
,
A.
, and
Kvandal
,
H.
,
1995
, “
Pressure Drop and Dispersion Characteristics of Separated Oil/Water Flow
,”
Proceedings of the International Symposium on Two-Phase Flow Modelling and Experimentation
,
Rome, Italy
,
Oct. 9–11
, pp.
583
591
.
40.
Vielma
,
M. A.
,
Atmaca
,
S.
,
Sarica
,
C.
, and
Zhang
,
H.-Q.
,
2008
, “
Characterization of Oil/Water Flows in Horizontal Pipes
,”
SPE Projects, Facil. Constr.
,
3
(
4
), pp.
1
21
.
41.
Wolpert
,
D. H.
, and
Macready
,
W. G.
,
1995
, “
No Free Lunch Theorems for Search
,” Technical Report No. SFI-TR-95-02-010,
Santa Fe Institute
.
42.
Vapnik
,
V.
,
2013
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
,
New York
.
43.
Schapire
,
R. E.
,
1990
, “
The Strength of Weak Learnability
,”
Mach. Learn.
,
5
(
2
), pp.
197
227
.
44.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
45.
Rosenblatt
,
F.
,
1958
, “
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
,”
Psychol. Rev.
,
65
(
6
), pp.
386
408
.
46.
Cover
,
T.
, and
Hart
,
P.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
47.
Littlestone
,
N.
, and
Warmuth
,
M. K.
,
1994
, “
The Weighted Majority Algorithm
,”
Inf. Comput.
,
108
(
2
), pp.
212
261
.
48.
Milligan
,
G. W.
, and
Cooper
,
M. C.
,
1988
, “
A Study of Standardization of Variables in Cluster Analysis
,”
J. Classif.
,
5
(
2
), pp.
181
204
.
49.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
SMOTE: Synthetic Minority Over-Sampling Technique
,”
J. Artific. Intell. Res.
,
16
, pp.
321
357
.
50.
Villa
,
A. E. P.
,
Masulli
,
P.
, and
Rivero
,
A. J. P.
,
2016
, “
Artificial Neural Networks and Machine Learning–ICANN 2016
,”
Proceedings of the 25th International Conference on Artificial Neural Networks
,
Barcelona, Spain
,
Sept. 6–9
,
Springer
.
51.
Lilliefors
,
H. W.
,
1967
, “
On the Kolmogorov-Smirnov Test for Normality With Mean and Variance Unknown
,”
J. Am. Stat. Assoc.
,
62
(
318
), pp.
399
402
.
52.
Friedman
,
M.
,
1937
, “
The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
,”
J. Am. Stat. Assoc.
,
32
(
200
), pp.
675
701
.
53.
Wilcoxon
,
F.
,
1992
, “Individual Comparisons by Ranking Methods,”
Breakthroughs in Statistics
,
Springer
,
New York
, pp.
196
202
.
54.
Dunn
,
O. J.
,
1961
, “
Multiple Comparisons Among Means
,”
J. Am. Stat. Assoc.
,
56
(
293
), pp.
52
64
.
55.
Yiping
,
L. I. U.
,
Hua
,
Z. H. A. N. G.
,
Shuhua
,
W. A. N. G.
, and
Jing
,
W. A. N. G.
,
2008
, “
Prediction of Pressure Gradient and Holdup in Small Eötvös Number Liquid-Liquid Segregated Flow
,”
Chin. J. Chem. Eng.
,
16
(
2
), pp.
184
191
.
56.
Pearson
,
K.
,
1901
, “
LIII. On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
57.
Van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using t-SNE
,”
J. Mach. Learn. Res.
,
9
(
11
).
58.
Xu
,
L.
,
Chen
,
J.
,
Cao
,
Z.
,
Zhang
,
W.
,
Xie
,
R.
,
Liu
,
X.
, and
Hu
,
J.
,
2016
, “
Identification of Oil–Water Flow Patterns in a Vertical Well Using a Dual-Ring Conductance Probe Array
,”
IEEE Trans. Instrum. Meas.
,
65
(
5
), pp.
1249
1258
.
59.
Jain
,
A. K.
,
Duin
,
R. P. W.
, and
Mao
,
J.
,
2000
, “
Statistical Pattern Recognition: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
1
), pp.
4
37
.
You do not currently have access to this content.