Abstract

Understanding the key corrosion mechanisms in a light water reactor primary water environment is critical to developing and exploiting improved zirconium alloy fuel cladding. In this paper, we report recent research highlights from a new collaborative research programme involving 3 U.K. universities and 5 partners from the nuclear industry. A major part of our strategy is to use the most advanced analytical tools to characterise the oxide and metal/oxide interface microstructure, residual stresses, as well as the transport properties of the oxide. These techniques include three-dimensional atom probe (3DAP), advanced transmission electron microscopy (TEM), synchrotron X-ray diffraction, Raman spectroscopy, and in situ electro-impedance spectroscopy. Synchrotron X-ray studies have enabled the characterisation of stresses, tetragonal phase fraction, and texture in the oxide as well as the stresses in the metal substrate. It was found that in the thick oxide (here, Optimized-ZIRLO, a trademark of the Westinghouse Electric Company, tested at 415°C in steam) a significant stress profile can be observed, which cannot be explained by metal substrate creep alone but that local delamination of the oxide layers due to crack formation must also play an important role. It was also found that the oxide stresses in the monoclinic and tetragonal phases grown on Zircaloy-4 (autoclave testing at 360°C) first relax during the pre-transition stage. Just before transition, the compressive stress in the monoclinic phase suddenly rises, which is interpreted as indirect evidence of significant tetragonal to monoclinic phase transformation taking place at this stage. TEM studies of pre- and post-transition oxides grown on ZIRLO, a trademark of the Westinghouse Electric Company, have used Fresnel contrast imaging to identify nano-sized pores along the columnar grain boundaries that form a network interconnected once the material goes through transition. The development of porosity during transition was further confirmed by in situ electrochemical impedance spectroscopy (EIS) studies. 3DAP analysis was used to identify a ZrO sub-oxide layer at the metal/oxide interface and to establish its three-dimensional morphology. It was possible to demonstrate that this sub-oxide structure develops with time and changes dramatically around transition. This observation was further confirmed by in situ EIS studies, which also suggest thinning of the sub-oxide/barrier layer around transition. Finally, 3DAP analysis was used to characterise segregation of alloying elements near the metal/oxide interface and to establish that the corroding metal near the interface (in this case ZIRLO) after 100 days at 360°C displays a substantially different chemistry and microstructure compared to the base alloy with Fe segregating to the Zr/ZrO interface.

References

1.
Ploc
,
R. A.
, “
Physical Changes in Thin ZrO2 Films With Thickening
,”
International Conference on Electron Microscopy
,
1970
,
Grenoble
.
2.
Arima
,
T.
,
Moriyama
,
K.
,
Gaja
,
N.
,
Furuya
,
H.
,
Idemitsu
,
K.
, and
Inagaki
,
Y.
, “
Oxidation Kinetics of Zircaloy-2 Between 450°C and 600°C in Oxidizing Atmosphere
,”
J.Nucl. Mater.
, Vol.
257
, No.
1
,
1998
, pp.
67
77
. https://doi.org/10.1016/S0022-3115(98)00069-5
3.
Motta
,
A.T.
,
Erwin
,
T.
,
Delaire
,
O.
,
Birtcher
,
R. C.
,
Chu
,
Y. S.
,
Maser
,
J.
,
Mancini
,
D. C.
, and
Lai
,
B.
, “
Microstructural Characterisation of Oxides Formed on Model Zr Alloys Using Synchrotron Radiation
,”
15th International Symposium on Zirconium in the Nuclear Industry
,
Sunriver, OR
,
2006
,
J. ASTM Int.
, Vol.
5
, No.
3
, paper ID JAI101257.
4.
Bryner
,
J. S.
, “
The Cyclic Nature of Corrosion of Zircaloy-4 in 633 K Water
,”
J. Nucl. Mater.
, Vol.
82
, No.
1
,
1979
, pp.
84
101
. https://doi.org/10.1016/0022-3115(79)90042-4
5.
Cox
,
B.
, “
Pore Structure in Oxide Films on Irradiated and Unirradiated Zirconium Alloys
,”
J. Nucl. Mater.
, Vol.
148
, No.
3
,
1987
, pp.
332
343
. https://doi.org/10.1016/0022-3115(87)90027-4
6.
Ni
,
N.
, et al
, “
Porosity in Oxides on Zirconium Fuel Cladding Alloys, and its Importance in Controlling Oxidation Rates
,”
Scr. Mater.
, Vol.
62
, No.
8
,
2010
, pp.
564
567
. https://doi.org/10.1016/j.scriptamat.2009.12.043
7.
Garzarolli
,
F.
,
Seidel
,
H.
,
Tricot
,
R.
, and
Gros
,
J. P.
, “
Oxide-Growth Mechanism on Zirconium Alloys
,”
Zirconium in the Nuclear Industry: Ninth International Symposium
, ASTM-STP 1132,
1991
, Kobe, Japan, pp.
395
415
.
8.
Beie
,
H. J.
,
Mitwalsky
,
A.
,
Garzarolli
,
F.
,
Ruhmann
,
H.
, and
Sell
,
H. J.
, “
Examinations of the Corrosion Mechanism of Zirconium Alloys
,”
Zirconium in the Nuclear Industry: Tenth International Symposium
, ASTM STP 1245,
1994
, Baltimore, MA, pp.
615
643
.
9.
Yilmazbayhan
,
A.
,
Breval
,
E.
,
Motta
,
A. T.
, and
Comstock
,
R. J.
, “
Transmission Electron Microscopy Examination of Oxide Layers Formed on Zr Alloys
,”
J. Nucl. Mater.
, Vol.
349
, No.
3
,
2006
, pp.
265
281
. https://doi.org/10.1016/j.jnucmat.2005.10.012
10.
Cox
,
B.
, “Are zirconia corrosion films a form of Partially Stabilized Zirconia (PSZ)?,” Report No. AECL 9382, Atomic Energy of Canada Ltd, Chalk River Nuclear Laboratories, Chalk River, ON, Canada,
1987
.
11.
Godlewski
,
J.
, “
How the Tetragonal Zirconia is Stabilized in the Oxide Scale that is Formed on a Zirconium Alloy Corroded at 400°C in Steam
,”
Zirconium in the Nuclear Industry: 10th International Symposium
,
Philadelphia, PA
, n,
1994
,
ASTM International
,
West Conshohocken, PA
.
1994
, pp.
663
683
.
12.
Godlewski
,
J.
,
Bouvier
,
P.
,
Lucazeau
,
G.
, and
Fayette
,
L.
, “
Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zr-Based Alloys
,”
Zirconium in the Nuclear Industry: 12th International Symposium
, Toronto,
1999
,
ASTM International
,
West Conshohocken, PA
., pp 877–900.
13.
Godlewski
,
J.
,
Gros
,
J. P.
,
Lambertin
,
M.
,
Wadier
,
J. F.
, and
Weidinger
,
H.
, “
Raman-Spectroscopy Study of the Tetragonal-to-Monoclinic Transition in Zirconium-Oxide Scales and Determination of Overall Oxygen Diffusion by Nuclear Microanalysis of O-18
,”
Zirconium in the Nuclear Industry: Ninth International Symposium
, Kobe, Japan,
1991
, ASTM STP, Vol.
1132
, pp.
416
434
.
14.
Yilmazbayhan
,
A.
,
Motta
,
A. T.
,
Comstock
,
R. J.
,
Sabol
,
G. P.
,
Lai
,
B.
, and
Cai
,
Z.
, “
Structure of Zirconium Alloy Oxides Formed in Pure Water Studied With Synchrotron Radiation and Optical Microscopy: Relation to Corrosion Rate
,”
J. Nucl. Mater.
, Vol.
324
, No.
1
,
2004
, pp.
6
22
. https://doi.org/10.1016/j.jnucmat.2003.08.038
15.
Aldebert
,
P.
, and
Traverse
,
J.-P.
, “
Structure and Ionic Mobility of Zirconia at High Temperature
,”
J.Am. Ceram. Soc.
, Vol.
68
, No.
1
,
1985
, pp.
34
40
. https://doi.org/10.1111/j.1151-2916.1985.tb15247.x
16.
BarbÈris
,
P.
,
CorolleurThomas
,
G.
,
Guinebretiere
,
R.
,
MerleMejean
,
T.
,
Mirgorodsky
,
A.
, and
Quintard
,
P.
, “
Raman Spectra of Tetragonal Zirconia: Powder to Zircaloy Oxide Frequency Shift
,”
J. Nucl. Mater.
, Vol.
288
, No.
2-3
,
2001
, pp.
241
247
. https://doi.org/10.1016/S0022-3115(00)00727-3
17.
Bouvier
,
P.
,
Godlewski
,
J.
, and
Lucazeau
,
G.
, “
A Raman Study of the Nanocrystallite Size Effect on the Pressure-Temperature Phase Diagram of Zirconia Grown by Zirconium-Based Alloys Oxidation
,”
J. Nucl.Mater.
, Vol.
300
, No.
2-3
,
2002
, pp.
118
126
. https://doi.org/10.1016/S0022-3115(01)00756-5
18.
Block
,
S.
,
Jornada
,
J. A. H.
, and
Piermarini
,
G. J.
, “
Pressure-Temperature Phase Diagram of Zirconia
,”
J. Am. Ceram. Soc.
, Vol.
68
, No.
9
,
1986
, pp.
497
499
. https://doi.org/10.1111/j.1151-2916.1985.tb15817.x
19.
Ping
,
L.
,
Chen
,
I. W.
, and
James
,
E. P. P.-H.
, “
Effect of Dopants on Zirconia Stabilization; an X-Ray Absorption Study: I, Trivalent Dopants
,”
J. Am. Ceram. Soc.
, Vol.
77
, No.
1
,
1994
, pp.
118
128
. https://doi.org/10.1111/j.1151-2916.1994.tb06964.x
20.
Ping
,
L.
,
Chen
,
I. W.
, and
James
,
E. P. P.-H.
, “
Effect of Dopants on Zirconia Stabilization; an X-Ray Absorption Study: II, Tetravalent Dopants
,”
J. Am. Ceram. Soc.
, Vol.
77
, No.
5
,
1994
, pp.
1281
1288
. https://doi.org/10.1111/j.1151-2916.1994.tb05403.x
21.
Dae-Joon
,
K.
,
Joo-Wung
,
J.
, and
Hong-Lim
,.
L.
, “
Effect of Tetravalent Dopants on Raman Spectra of Tetragonal Zirconia
,”
J. Am. Ceram. Soc.
, Vol.
80
, No.
6
,
1997
, pp.
1453
1461
.
22.
Dae-Joon
,
K.
, “
Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2
,”
J. Am. Ceram. Soc.
, Vol.
73
, No.
1
,
1990
, pp.
115
120
. https://doi.org/10.1111/j.1151-2916.1990.tb05100.x
23.
Lawson
,
S.
, “
Environmental Degradation of Zirconia Ceramics
,”
J. Eur. Ceram. Soc.
, Vol.
15
, No.
6
,
1995
, pp.
485
502
. https://doi.org/10.1016/0955-2219(95)00035-S
24.
Clarke
,
D. R.
, and
Adar
,
F.
, “
Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia
,”
J. Am. Ceram. Soc.
, Vol.
65
, No.
6
,
1982
, pp.
284
288
. https://doi.org/10.1111/j.1151-2916.1982.tb10445.x
25.
Blat-Yrieix
,
M.
,
Ambard
,
A.
,
Foct
,
F.
,
Miquet
,
A.
,
Beguin
,
S.
, and
Cayet
,
N.
, “
Towards a Better Understanding of Dimensional Changes in Zircaloy-4: What is the Impact Induced by Hydrides and Oxide Layer
,”
15th International Symposium on Zirconium in the Nuclear Industry
. Sunriver, OR,
2006
,
J.ASTM Int.
, Vol. 5, No. 9, Paper ID JAI101321.
26.
Busser
,
V.
,
Desquines
,
J.
,
Fouquet
,
S.
,
Baietto
,
M. C.
, and
Mardon
,
J. P.
, “
Modelling of Corrosion Induced Stresses During Zircaloy-4 Oxidation in Air
,”
Mater. Sci. Forum
, Vol.
595–598
,
2008
, pp.
419
427
. https://doi.org/10.4028/www.scientific.net/MSF.595-598.419
27.
Heuer
,
A. H.
, and
Ruhle
,
M.
, “
Overview 45—On the Nucleation of the Martensitic-Transformation in Zirconia
,”
Acta Metall.
, Vol.
33
, No.
12
,
1985
, pp.
2101
2112
. https://doi.org/10.1016/0001-6160(85)90171-3
28.
Ruhle
,
M.
and
Wilkens
,
M.
, “
Defocusing Contrast of Cavities—1. Theory
,”
Cryst. Lattice Defects
, Vol.
6
, No.
3
,
1975
, pp.
129
140
.
29.
Jenkins
,
M. L.
, and
Kirk
,
M. A.
, “
Characterization of Radiation Damage by Transmission Electron Microscopy
,”
Series in Microscopy in Materials Science
,
B.
Cantor
and
M. J.
Goringe
, Eds.,
Institute of Physics Publishing
,
London
,
2001
, pp.
130
132
.
30.
Kelly
,
T. F.
, and
Larson
,
D. J.
, “
Local Electrode Atom Probes
,”
Mater. Charact.
, Vol.
44
, No.
1–2
, pp.
59
85
. https://doi.org/10.1016/S1044-5803(99)00055-8
31.
Miller
,
M. K.
,
Russell
,
K. F.
, and
Thompson
,
G. B.
, “
Strategies for Fabricating Atom Probe Specimens with a Dual Beam FIB
,”
Ultramicroscopy
, Vol.
102
, No.
4
,
2005
, pp.
287
298
. https://doi.org/10.1016/j.ultramic.2004.10.011
32.
Hudson
,
D.
, et al
, “
The Atomic Scale Structure and Chemistry of the Zircaloy-4 Metal-Oxide Interface
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors 2008
,
American Nuclear Society
,
Virginia Beach, VA
.
33.
Jensen
,
D. J.
, et al
, “
X-Ray Microscopy in Four Dimensions
,”
Mater. Today
, Vol.
9
, No.
1-2
, pp.
18
25
. https://doi.org/10.1016/S1369-7021(05)71334-1
34.
Withers
,
P. J.
, et al
, “
Residual Strain Measurement by Synchrotron Diffraction, in Ecrs 6
,”
Proceedings of the Sixth European Conference on Residual Stresses
,
2002
,
A. M.
Dias
et al, Eds.,
Trans Tech
,
Zurich-Uetikon
,
2002
, pp.
1
10
.
35.
Withers
,
P. J.
, et al
, “
Methods for Obtaining the Strain-Free Lattice Parameter When Using Diffraction to Determine Residual Stress
,”
J. Appl. Crystallogr.
, Vol.
40
, No.
5
,
2007
, pp.
891
904
. https://doi.org/10.1107/S0021889807030269
36.
Frankel
,
P.
,
Polatidis
,
E.
, and
Preuss
,
M.
, “
Diffraction Constants of Monoclic Zirconia Calculated by Self Consistent Modelling
,”
J. Appl. Crystallogr.
(submitted).
37.
SelÁuk
,
A.
, and
Atkinson
,
A.
, “
Elastic Properties of Ceramic Oxides Used in Solid Oxide Fuel Cells (SOFC)
,”
J. Eur. Ceram. Soc.
, Vol.
17
, No.
12
,
1997
, pp.
1523
1532
. https://doi.org/10.1016/S0955-2219(96)00247-6
38.
Noyan
,
I. C.
, and
Cohen
,
J. B.
,
Residual Stress
,
1986
.
39.
Genzel
,
C.
, et al
, “
The Materials Science Synchrotron Beamline EDDI for Energy-Dispersive Diffraction Analysis
,”
Nucl. Instrum. Methods Phys. Res. A
, Vol.
578
, No.
1
,
2007
, pp.
23
33
. https://doi.org/10.1016/j.nima.2007.05.209
40.
Ma
,
Q.
, and
Clarke
,
D. R.
, “
Piezospectroscopic Determination of Residual Stresses in Polycrystalline Aluminia
,”
J. Am. Ceram. Soc.
, Vol.
77
, No.
2
,
1994
, pp.
298
302
. https://doi.org/10.1111/j.1151-2916.1994.tb06996.x
41.
Portu
,
G. D.
, et al
, “
Measurement of Residual Stress Distributions in Al2O3/3Y-TZP Multilayered Composites by Fluorescence and Raman Microprobe Piezo-Spectroscopy
,”
Acta Mater.
, Vol.
53
, No.
5
,
2005
, pp.
1511
1520
. https://doi.org/10.1016/j.actamat.2004.12.003
42.
Wikmark
,
G.
,
Rudling P.
,
Lehtinen B.
,
Lehtinen B.
,
Hutchinson, B.
,
Hutchinson
,
B.
,
Oscarsson
,
A.
, and
et Ahlberg
,
E.
, “
The Importance of Oxide Morphology for the Oxidation Rate of Zirconium Alloys
,”
11th Symposium on Zirconium in the Nuclear Industry
, Garmisch-Partenkirchen, ASTM-STP 1295,
1997
,
ASTM International
,
West Conshohocken, PA
, pp.
55
73
.
43.
Roy
,
C.
, and
Burgess
,
B.
, “
A Study of the Stresses Generated in Zirconia Films During the Oxidation of Zirconium Alloys
,”
Oxid. Met.
, Vol.
2
, No.
3
,
1970
, pp.
235
261
. https://doi.org/10.1007/BF00614620
44.
Petigny
,
N.
,
Barberis
,
P.
,
Lemaignan
,
C.
,
Valot
,
C.
, and
Lallemant
,
M.
, “
In Situ XRD Analysis of the Oxide Layers Formed by Oxidation at 743 K on Zircaloy 4 and Zr-1NbO
,”
J. Nucl. Mater.
, Vol.
280
, No.
3
,
2000
, pp.
318
330
. https://doi.org/10.1016/S0022-3115(00)00051-9
45.
Li
,
H.
,
Glavicic
,
M. G.
, and
Szpunar
,
J. A.
, “
A Model of Texture Formation in ZrO2 films
,”
Mater. Sci. Eng., A
, Vol.
366
, No.
1
,
2004
, pp.
164
174
. https://doi.org/10.1016/S0921-5093(02)00787-6
46.
Bossis
,
P.
,
Lelièvre
,
G.
,
Barberis
,
P.
,
Iltis
,
X.
,
Lefebvre
,
F.
, “
Multi-Scale Characterization of the Metal-Oxide Interface of Zirconium Alloys
,”
Zirconium in the Nuclear Industry: 12th International Symposium
, ASTM-STP 1354,
2000
, Vol.
1354
, pp.
918
945
.
47.
Wadman
,
B.
,
Andren
,
H. O.
, and
Falk
,
L. K. L.
, “
Atom Probe Analysis of this Oxide Layer on Zircaloy Needles
,”
J. Phys. (Paris)
, Vol.
50
, No.
C8
, pp.
C8303
C8308
.
48.
Miller
,
M. K.
, et al
,
Atom Probe Field Ion Microscopy
,
Clarendon
,
Oxford
,
1996
.
49.
Banerjee
,
S.
, and
Mukhopadhyay
,
P.
,
Phase Transformation: Examples from Titanium and Zirconium Alloys
,
Pergamon
,
Oxford
,
2007
.
50.
Bardwell
,
J. A.
, and
McKubre
,
M. C. H.
, “
Ac Impedance Spectroscopy of the Anodic Film on Zirconium in Neutral Solution
,”
Electrochim. Acta
, Vol.
36
, No.
3-4
,
1991
, pp.
647
653
. https://doi.org/10.1016/0013-4686(91)85153-X
51.
Barberis
,
P.
, and
Frichet
,
A.
, “
Characterization of Zircaloy-4 Oxide Layers by Impedance Spectroscopy
,”
J. Nucl. Mater.
, Vol.
273
, No.
2
,
1999
, pp.
182
191
. https://doi.org/10.1016/S0022-3115(99)00025-2
52.
Abriata
,
J.
,
Garcés
,
J.
, and
Versaci
,
R.
, “
The O-Zr (Oxygen-Zirconium) System
,”
J. Phase Equilib.
, Vol.
7
, No.
2
,
1986
, pp.
116
124
.
This content is only available via PDF.
You do not currently have access to this content.