Abstract

The deformation systems in hexagonal close-packed (hcp) metals are not as symmetrically distributed as in cubic ones. Furthermore, because the primary slip systems are not as numerous and are limited to deformations in the <a> direction, twinning competes with slip in plastic deformation and can, depending on the deformation conditions, play an essential role. In order to explain the conditions in Zirconium and Zircaloy, the well-established relationships of hcp metals are discussed and so are their dependencies on the metal-specific parameters of the hexagonal structure. The interactions between deformation mechanisms and texture formation on the one side and deformation mechanisms and mechanical anisotropy on the other can be likewise transferred to other hcp metals, if one takes into account the differences in dependence of the metal-specific parameters.

The low offer of slip systems, their asymmetrical distribution (prism slip in <a> directions and — under constraint — pyramidal slip in <c+a> directions) as well as the strict crystallographic orientation relationships of first and second order pyramidal twinning result in the formation of a strong deformation texture. By virtue of twinning, even small deformation rates lead to large lattice rotations, which change the orientation of the crystallites where all basal poles align in the direction of the compressive force. The fact that in Zirconium and Zirconium base alloys the preferred crystallographic orientation, which is spread in the transverse direction, is also retained as the final stable position is explained by <c + a> pyramidal slip.

The decisive factor in texture development is the material flow, the degree of freedom of which is lowest for tube reducing as compared to sheet rolling and wire drawing processes. Therefore tube reducing (characterized by reductions in cross-section RA, wall thickness RW, and diameter RD) permits the most precise predictions of the operative forces and the resulting deformation mechanisms. Systematic investigations on the influence of the reduction parameters on the resulting preferred crystallographic orientation in Zircaloy tubing have shown that the determining factor controlling the texture development is the ratio RW1RD. For RW1RD > 1, the basal poles align preferentially in the radial direction. For RW1RD = 1, the basal poles are randomly distributed in the radial-tangential plane. For RW1RD < 1, the basal poles preferentially align in the tangential direction. The sheet texture is identical to the tube texture for RW1RD > 1, because in both examples the material flow is characterized by a preponderance of wall thickness reduction. The fiber texture of wire is identical to the texture of tubes for RW/RD = 1. One can visualize the wire deformation as corresponding to that of concentric tubes with different diameters to comply with tube reduction rates RW1RD = 1 under the condition of constant volume. Independent of the fabrication method for the cold-worked semi finished products, a first order prism pole aligns itself parallel to the direction of elongation. (During recrystallization, the basal poles do not change significantly. The basal planes, however, rotate continuously with increasing annealing temperature by ± 30° around their pole, so that in the final stable position, instead of a first order prism pole [cold deformation texture], a second order prism pole becomes parallel to the axial or rolling direction, respectively.) Knowing these dependencies, it is possible to tailor the texture of Zirconium base alloys tubing within the given limits to the requirements in nuclear application.

For textured materials, on the other hand, the deformation mechanisms are also responsible for the strong anisotropy of the mechanical properties. This is discussed on the example of specially prepared Zircaloy tubes, which were machined out of a sufficiently thick Zircaloy plate with pronounced sheet texture. By this procedure, one obtains around the circumference of the tubing continuously changing preferred orientations of the basal poles with the extreme orientations possible in Zircaloy tubing. For the different uni- and multiaxial loading conditions applied, the theoretical predictions of the mechanical behavior agrees in any case with the experimental results.

In nuclear application, the anisotropic behavior of biaxial loading conditions is represented by yield loci, creep loci, or burst loci according to the respective criteria yield stress, creep rate, or fracture stress. Depending on the texture and the loading conditions, an attempt is made to correlate the shape of the loci to the operative deformation mechanism. In this way, it is possible to find selection criteria for the desirable texture in Zircaloy cladding tubes.

References

1.
Hall
,
E. O.
,
Twinning and Diffusionless Transformations in Metals
,
Butterworths
,
London
,
1954
.
2.
Deformation Twinning
,
R. E.
Reed-Hill
,
J. P.
Rosi
, and
H. C.
Rogers
, Eds.,
Gordon and Breach, Science Publishers
,
New York and London
, Vol.
25
,
1964
.
3.
Christian
,
J. W.
,
Theory of Transformations in Metals and Alloys
,
Pergamon Press
,
Oxford
,
1965
.
4.
Partridge
,
P. G.
,
Metallurgical Reviews
 0076-6690, Vol.
12
, No.
118
,
1967
, p. 169.
5.
Wassermann
,
G.
and
Grewen
,
J.
,
Texturen Metallischer Werkstoffe
,
Springer
,
Berlin
,
1962
.
6.
Dillamore
,
I. L.
and
Roberts
,
W. T.
,
Metallurgical Reviews
 0076-6690, Vol.
10
,
1965
, p. 271.
7.
Bunge
,
H. J.
,
Kristall und Technik
 0023-4753, Vol.
6
,
1971
, p. 667.
8.
Barret
,
C. S.
and
Massalski
,
T. B.
,
Structure of Metals
,
McGraw-Hill
,
New York
,
1966
.
9.
Smallman
,
R. E.
,
Modern Physical Metallurgy
,
Butterworths
,
London
,
1970
.
10.
Weertman
,
J.
and
Weertman
,
J. R.
,
Elementary Dislocation Theory
,
MacMillan
,
London
,
1964
.
11.
Peierls
,
R.
,
Proceedings, Physics Society
, Vol.
52
,
1940
, p. 34.
12.
Nabarro
,
F. R. N.
,
Proceedings, Physics Society
, Vol.
58
,
1947
, p. 669.
13.
Seeger
,
A.
,
Moderne Probleme der Metallphysik
,
Springer
,
Berlin
,
1965
.
14.
Reed-Hill
,
R. E.
, In:
Deformation Twinning
,
R. E.
Reed-Hill
,
J. P.
Rosi
, and
H. C.
Rogers
, Eds.,
Gordon and Breach Science Publishers
,
New York and London
, Vol.
25
,
1964
, p. 295.
15.
Rapperport
,
E. J.
,
Acta Metallurgica
 0001-6160 https://doi.org/10.1016/0001-6160(59)90018-5, Vol.
7
,
1959
, p. 254.
16.
Rapperport
,
E. J.
, “
Room Temperature Deformation Processes in Zirconium
,” NMI 1199,
Technical Information Service Extension
,
Oak Ridge, TN
,
1958
.
17.
Sokurskii
,
I. N.
and
Protsenko
,
L. N.
,
Soviet Journal of Atomic Energy
, Vol.
4
,
1958
, p. 579 (English translation).
18.
Rapperport
,
E. J.
and
Hartley
,
C. S.
, “
Deformation Modes of Zirconium at 77 K, 300 K, 575 K and 1075 K
,” NMI-1221,
Nuclear Metals, Inc.
,
Concord, MA
,
1959
.
19.
Howe
,
L. M.
,
Whitton
,
J. L.
, and
McGurn
,
J. F.
,
Acta Metallurgica
 0001-6160, Vol.
10
,
1962
, p. 773.
20.
Pollard
,
J.
,
Rzepski
,
Mme.
, and
Lehr
,
P.
, In:
9 Colloque de Metallurgie, Etude sur la Corrosion et la Protection du Zirconium et de des Alliages
,
M.
Salese
and
M.
Chaudron
, Eds.,
Press Universitaires de France
,
Paris
,
1966
, p. 248.
21.
Baldwin
,
D. H.
and
Reed-Hill
,
R. E.
,
Transactions, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
223
,
1965
, p. 248.
22.
Bailey
,
J. E.
,
Journal of Nuclear Materials
 0022-3115 https://doi.org/10.1016/0022-3115(62)90247-7, Vol.
7
,
1962
, p. 300.
23.
Martin
,
J. L.
and
Reed-Hill
,
R. E.
,
Transactions, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
230
,
1964
, p. 780.
24.
Tenckhoff
,
E.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
63
,
1972
, p. 192.
25.
Jensen
,
J. A.
and
Backofen
,
W. A.
,
Canadian Metallurgical Quarterly
 0008-4433, Vol.
11
,
1972
, p. 39.
26.
Akhtar
,
A.
,
Journal of Nuclear Materials
 0022-3115, Vol.
47
,
1973
, p. 79.
27.
Akhtar
,
A.
and
Teghtsoonian
,
A.
,
Acta Metallurgica
 0001-6160 https://doi.org/10.1016/0001-6160(71)90019-8, Vol.
19
,
1971
, p. 655.
28.
Warren
,
M. R.
and
Beevers
,
C. J.
,
Metallurgical Transactions
 0026-086X, Vol.
1
,
1970
, p. 1657.
29.
Tenckhoff
,
E.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
63
,
1972
, p. 729.
30.
Westlake
,
D. G.
,
Acta Metallurgica
 0001-6160 https://doi.org/10.1016/0001-6160(61)90226-7, Vol.
9
,
1961
, p. 327.
31.
Partridge
,
P. G.
and
Roberts
,
E.
, In:
Proceedings, 3rd European Regional Conference on Electron Microscopy
,
Prague
,
1964
, p. 213.
32.
Partridge
,
P. G.
,
Acta Metallurgica
 0001-6160, Vol.
13
,
1965
, p. 517.
33.
Conrad
,
H.
and
Perlmutter
,
I.
,
Conference Internationale sur la Metallurgie du Beryllium, Paris
,
Presses Universitaires de France
,
1966
, p. 326.
34.
Kocks
,
U. F.
and
Westlake
,
D. G.
,
Transactions, The Metallurgical Society, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
239
,
1967
, p. 1107.
35.
Picklesimer
,
M. L.
,
Electrochemical Technology
 0424-8090, Vol.
4
,
1966
, p. 289;
Picklesimer
,
M. L.
,
Metallurgical and Petroleum Engineers
, Vol.
242
,
1968
, p. 1105.
36.
Grewen
,
J.
, “
Textures of Hexagonal Metals and Alloys and Their Influence on Industrial Application
,”
Pont-a-Mousson Conference on Texture
,
1973
.
37.
Tenckhoff
,
E.
,
Verformungsmechanismen Textur und Anisotropie in Zirkonium und Zircaloy
, Materialkundlich-Technische Reihe 5,
Gebrüder Bornträger Verlag
,
Berlin — Stuttgart
,
1980
38.
Tenckhoff
,
E.
,
Metallurgical Transactions
 0026-086X, Vol.
9A
,
1978
, p. 1401
39.
Picklesimer
,
M. L.
, “
A Preliminary Examination of the Formation and Utilization of Texture and Anisotropy in Zircaloy-2
,” ORNL-TM-460,
Oak Ridge National Laboratory
,
Oak Ridge, TN
,
1963
.
40.
Tenckhoff
,
E.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
61
,
1970
, p. 64.
41.
Tenckhoff
,
E.
and
Rittenhouse
,
P. L.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
63
,
1972
, p. 83.
42.
Tenckhoff
,
E.
, “
Deformation Mechanisms, Texture, and Anisotropy of Zirconium and Zircaloy
,” ASTM, STP 966,
ASTM International
,
West Conshohocken, PA
,
1988
.
43.
Burgers
,
W. G.
,
Fast
,
J. D.
, and
Jacobs
,
F. M.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
29
,
1937
, p. 410.43.
44.
McHargue
,
C. J.
and
Hammond
,
J. P.
,
Transactions, The Metallurgical Society, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
197
,
1953
, p. 57.
45.
Tenckhoff
,
E.
and
Rittenhouse
,
P. L.
,
Journal of Nuclear Materials
 0022-3115, Vol.
35
,
1970
, p. 14.
46.
Schulz
,
L. G.
,
Journal of Applied Physics
 0021-8979 https://doi.org/10.1063/1.1698268, Vol.
20
,
1949
, p. 1030.
47.
Chernock
,
W. P.
and
Beck
,
P. A.
,
Journal of Applied Physics
 0021-8979 https://doi.org/10.1063/1.1702204, Vol.
23
,
1952
, p. 341.
48.
Chernock
,
W. P.
,
Zeitschrift fuer Metallkunde
 0044-3093, Vol.
46
,
1955
, p. 311.
49.
Wilson
,
A. J. C.
,
Journal of Scientific Instruments
 0950-7671 https://doi.org/10.1088/0950-7671/27/12/301, Vol.
27
,
1950
, p. 321.
50.
Tenckhoff
,
E.
,
Journal of Applied Physics
 0021-8979 https://doi.org/10.1063/1.1658393, Vol.
41
,
1970
, p. 3944.
51.
Bunge
,
H. J.
, “
Mathematische Methoden der Texturanalyse
,”
Akademie Verlag
,
Berlin
,
1969
.
52.
Williams
,
R. O.
,
Transactions, The Metallurgical Society, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
242
,
1968
, p. 104.
53.
Venables
,
J. A.
,
Harland
,
C. J.
,
Philosophical Magazine
 1478-6435, Vol.
27
,
1973
, p. 1193
54.
Jensen
,
D. J.
and
Schmidt
,
N.-H.
,
Transactions, The Metallurgical Society
,
1990
, p. 219
55.
Wright
,
S. J.
and
Adams
,
B. L.
,
Textures and Microstructures
, Vol.
13
,
1991
, p. 123
56.
Rittenhouse
,
P. L.
and
Picklesimer
,
M. L.
,
Electrochemical Technology
 0424-8090, Vol.
4
,
1966
, p. 322.
57.
Tenckhoff
,
E.
,
Zirconium in Nuclear Applications
, ASTM STP 551,
ASTM International
,
West Conshohocken, PA
,
1974
, p. 179.
58.
Peehs
,
M.
,
Stehle
,
H.
, and
Steinberg
,
E.
, In:
Zirconium in Nuclear Applications
, ASTM STP 681,
ASTM International
,
West Conshohocken, PA
,
1979
, p. 244
59.
von Mises
,
R. Z.
angew.,
Math. Mech.
, Vol.
8
,
1928
, p. 161.
60.
Tresca
,
H.
,
Comptes Rendus Hebdomadaires des Seances de la Academie de Sciences
, Vol.
59
,
1864
, pp. 754 and 764.
61.
Hill
,
R.
,
Proceedings, Royal Society
,
London
, Vol.
A193
,
1948
, p. 281.
62.
Dressler
,
G.
and
Matucha
,
K.-H.
, In:
Zirconium in the Nuclear Industry
, ASTM STP 633,
ASTM International
,
West Conshohocken, PA
,
1977
, p. 508.
63.
Dressler
,
G.
,
Matucha
,
K. H.
, and
Wincierz
,
P.
,
Proceedings 2nd International Conference on Structural Mechanics in Reactor Technology
,
Berlin
,
1973
, Vol.
1
, C2/2.
64.
Stehle
,
H.
,
Steinberg
,
E.
, and
Tenckhoff
,
E.
, In:
Zirconium in the Nuclear Industry
, ASTM STP 633,
ASTM International
,
West Conshohocken, PA
,
1977
, p. 486.
65.
Duncombe
,
E.
, WAPD-TM-984,
Bettis Atomic Power Laboratory
,
Pittsburgh, PA
,
1973
.
66.
Holicky
,
M. J.
and
Schroeder
,
I.
,
Journal of Nuclear Materials
 0022-3115, Vol.
44
,
1972
, p. 31.
67.
Douglas
,
D. L.
, “
The Metallurgy of Zirconium
,”
International Atomic Energy Agency
,
Vienna
,
1971
.
68.
Irvin
,
J. E.
,
Electrochemical Technology
 0424-8090, Vol.
4
,
1966
, p. 240.
69.
Azzarto
,
F. J.
,
Baldwin
,
E. E.
,
Wiesinger
,
F. W.
, and
Lewis
,
D. M.
,
Journal of Nuclear Materials
 0022-3115, Vol.
30
,
1969
, p. 208.
70.
Veevers
,
K.
and
Rotsey
,
W. B.
,
Journal of Nuclear Materials
 0022-3115, Vol.
27
,
1968
, p. 108.
71.
Gilbert
,
E. R.
,
Journal of Nuclear Materials
 0022-3115, Vol.
26
,
1968
, p. 105.
72.
Ibrahim
,
E. E.
, In:
Applications Related Phenomena in Zirconium and Its Alloys
, ASTM STP 458,
ASTM International
,
West Conshohocken, PA
,
1969
, p. 18.
73.
Howe
,
M. L.
, “
The Annealing of Irradiation Damage in Zircaloy-2 and the Effect of High Temperature Radiation on the Tensile Properties of Zircaloy-2
,” Report 1024,
Atomic Energy of Canada Ltd.
,
1960
.
74.
Howe
,
M. L.
, “
Radiation Damage in Zirconium, Zircaloy-2, and 410 Stainless Steel
,” Report 1484,
Atomic Energy of Canada Ltd.
,
1962
.
75.
Ardell
,
A. J.
and
Sherby
,
O. D.
,
Transactions, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
239
,
1967
, p. 1547
76.
Fidleris
,
V.
, In:
Application Related Phenomena in Zirconium and Its Alloys
, ASTM STP 458,
ASTM International
,
West Conshohocken, PA
,
1969
, p. 1.
77.
Holmes
,
J. J.
,
Journal of Nuclear Materials
 0022-3115, Vol.
13
,
1964
, p. 137.
78.
Berstein
,
J. M.
,
Transactions, American Institute of Mining, Metallurgical and Petroleum Engineers
, Vol.
239
,
1967
, p. 1518.
79.
Hesketh
,
R. V.
,
Journal of Nuclear Materials
 0022-3115, Vol.
26
,
1968
, p. 77.
80.
Pieroy
,
G. R.
,
Journal of Nuclear Materials
 0022-3115, Vol.
26
,
1968
, p. 18.
81.
Nichols
,
F. A.
,
Journal of Nuclear Materials
 0022-3115, Vol.
30
,
1969
, p. 249.
82.
Bell
,
W. L.
, In:
Zirconium in Nuclear Applications
, ASTM STP 551,
ASTM International
,
West Conshohocken, PA
,
1974
, p. 199.
This content is only available via PDF.
You do not currently have access to this content.