Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: air cooling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Heat Mass Transfer. October 2021, 143(10): 101501.
Paper No: HT-21-1514
Published Online: September 8, 2021
... increase. Traditional air-cooling approaches usually provide insufficient performance or require heavy and bulky heat sinks to achieve adequate thermal management. To address this problem, a novel air cooled vertically enhanced manifold microchannel system (VEMMS) was developed. While minimizing...
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Heat Mass Transfer. November 2013, 135(11): 111005.
Paper No: HT-12-1147
Published Online: September 23, 2013
.... 01 04 2012 28 09 2012 The objective of this effort is to pursue artificial microscale surface roughness features in the form of dimples, on the walls of an air-cooled heat sink channel, as a passive option to energy-efficiently augment heat transfer in forced convection flows. High...